Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide

Yu-Jen Lu1,2,#, Hung-Wei Yang1,#, Sheng-Che Hung3, Chiung-Yin Huang2, Shin-Ming Li4, Chen-Chi M Ma4, Pin-Yuan Chen2, Hong-Chieh Tsai2, Kuo-Chen Wei2, Jyh-Ping Chen1 1Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan; 2Department of Neurosurgery, Chang...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lu YJ, Yang HW, Hung SC, Huang CY, Li SM, Ma CCM, Chen PY, Tsai HC, Wei KC, Chen JP
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/cb8f1449461341768de94e3baca52517
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cb8f1449461341768de94e3baca52517
record_format dspace
spelling oai:doaj.org-article:cb8f1449461341768de94e3baca525172021-12-02T01:32:46ZImproving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide1176-91141178-2013https://doaj.org/article/cb8f1449461341768de94e3baca525172012-03-01T00:00:00Zhttp://www.dovepress.com/improving-thermal-stability-and-efficacy-of-bcnu-in-treating-glioma-ce-a9610https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Yu-Jen Lu1,2,#, Hung-Wei Yang1,#, Sheng-Che Hung3, Chiung-Yin Huang2, Shin-Ming Li4, Chen-Chi M Ma4, Pin-Yuan Chen2, Hong-Chieh Tsai2, Kuo-Chen Wei2, Jyh-Ping Chen1 1Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan; 2Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan; 3Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; 4Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan#These authors contributed equally to this workBackground: 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a commercial chemotherapeutic drug for treating malignant brain tumors, has poor thermal stability and a short half-life. Immobilization of BCNU on a nanocarrier might increase the thermal stability of BCNU and extend its half-life.Methods: Nanosized graphene oxide (GO) could be modified by polyacrylic acid (PAA) to improve the aqueous solubility and increase the cell penetration efficacy of the nanocarrier. PAA–GO intended as a drug carrier for BCNU was prepared and characterized in this study. The size and thickness of PAA–GO was investigated by transmission electron microscopy and atomic force microscopy, and the presence of PAA functional groups was confirmed by electron spectroscopy for chemical analysis and thermogravimetric analysis. BCNU was conjugated to PAA–GO by covalent binding for specific killing of cancer cells, which could also enhance the thermal stability of the drug.Results: Single layer PAA–GO (about 1.9 nm) with a lateral width as small as 36 nm was successfully prepared. The optimum drug immobilization condition was by reacting 0.5 mg PAA–GO with 0.4 mg BCNU, and the drug-loading capacity and residual drug activity were 198 µg BCNU/mg PAA–GO and 70%, respectively. This nanocarrier significantly prolonged the half-life of bound BCNU from 19 to 43 hours compared with free drug and showed efficient intracellular uptake by GL261 cancer cells. The in vitro anticancer efficacy of PAA–GO–BCNU was demonstrated by a 30% increase in DNA interstrand cross-linking and a 77% decrease in the IC50 value toward GL261 compared with the same dosage of free drug.Conclusion: Nanosized PAA–GO serves as an efficient BCNU nanocarrier by covalent binding. This nanocarrier will be a promising new vehicle for an advanced drug delivery system in cancer therapy.Keywords: graphene oxide, BCNU, glioma cells, drug delivery, thermal stabilityLu YJYang HWHung SCHuang CYLi SMMa CCMChen PYTsai HCWei KCChen JPDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 1737-1747 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Lu YJ
Yang HW
Hung SC
Huang CY
Li SM
Ma CCM
Chen PY
Tsai HC
Wei KC
Chen JP
Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
description Yu-Jen Lu1,2,#, Hung-Wei Yang1,#, Sheng-Che Hung3, Chiung-Yin Huang2, Shin-Ming Li4, Chen-Chi M Ma4, Pin-Yuan Chen2, Hong-Chieh Tsai2, Kuo-Chen Wei2, Jyh-Ping Chen1 1Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan; 2Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan; 3Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; 4Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan#These authors contributed equally to this workBackground: 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a commercial chemotherapeutic drug for treating malignant brain tumors, has poor thermal stability and a short half-life. Immobilization of BCNU on a nanocarrier might increase the thermal stability of BCNU and extend its half-life.Methods: Nanosized graphene oxide (GO) could be modified by polyacrylic acid (PAA) to improve the aqueous solubility and increase the cell penetration efficacy of the nanocarrier. PAA–GO intended as a drug carrier for BCNU was prepared and characterized in this study. The size and thickness of PAA–GO was investigated by transmission electron microscopy and atomic force microscopy, and the presence of PAA functional groups was confirmed by electron spectroscopy for chemical analysis and thermogravimetric analysis. BCNU was conjugated to PAA–GO by covalent binding for specific killing of cancer cells, which could also enhance the thermal stability of the drug.Results: Single layer PAA–GO (about 1.9 nm) with a lateral width as small as 36 nm was successfully prepared. The optimum drug immobilization condition was by reacting 0.5 mg PAA–GO with 0.4 mg BCNU, and the drug-loading capacity and residual drug activity were 198 µg BCNU/mg PAA–GO and 70%, respectively. This nanocarrier significantly prolonged the half-life of bound BCNU from 19 to 43 hours compared with free drug and showed efficient intracellular uptake by GL261 cancer cells. The in vitro anticancer efficacy of PAA–GO–BCNU was demonstrated by a 30% increase in DNA interstrand cross-linking and a 77% decrease in the IC50 value toward GL261 compared with the same dosage of free drug.Conclusion: Nanosized PAA–GO serves as an efficient BCNU nanocarrier by covalent binding. This nanocarrier will be a promising new vehicle for an advanced drug delivery system in cancer therapy.Keywords: graphene oxide, BCNU, glioma cells, drug delivery, thermal stability
format article
author Lu YJ
Yang HW
Hung SC
Huang CY
Li SM
Ma CCM
Chen PY
Tsai HC
Wei KC
Chen JP
author_facet Lu YJ
Yang HW
Hung SC
Huang CY
Li SM
Ma CCM
Chen PY
Tsai HC
Wei KC
Chen JP
author_sort Lu YJ
title Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
title_short Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
title_full Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
title_fullStr Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
title_full_unstemmed Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide
title_sort improving thermal stability and efficacy of bcnu in treating glioma cells using paa-functionalized graphene oxide
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/cb8f1449461341768de94e3baca52517
work_keys_str_mv AT luyj improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT yanghw improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT hungsc improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT huangcy improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT lism improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT maccm improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT chenpy improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT tsaihc improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT weikc improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
AT chenjp improvingthermalstabilityandefficacyofbcnuintreatinggliomacellsusingpaafunctionalizedgrapheneoxide
_version_ 1718403040600391680