Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning
Abstract Background Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-ho...
Guardado en:
Autores principales: | Jiayu Shang, Yanni Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cb95452b3ffb461eb7c9d39846bf9ffb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Jiarui Chen, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
GCN-CNVPS: Novel Method for Cooperative Neighboring Vehicle Positioning System Based on Graph Convolution Network
por: Chia-Hung Lin, et al.
Publicado: (2021) -
A Comprehensive Survey on Geometric Deep Learning
por: Wenming Cao, et al.
Publicado: (2020) -
Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus
por: Brian R. Wasik, et al.
Publicado: (2017)