A general and transferable deep learning framework for predicting phase formation in materials

Abstract Machine learning has been widely exploited in developing new materials. However, challenges still exist: small dataset is common for most tasks; new datasets, special descriptors and specific models need to be built from scratch when facing a new task; knowledge cannot be readily transferre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuo Feng, Huadong Fu, Huiyu Zhou, Yuan Wu, Zhaoping Lu, Hongbiao Dong
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/cb9c16f84ac54c0ca80356bf9df48132
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares