A general and transferable deep learning framework for predicting phase formation in materials
Abstract Machine learning has been widely exploited in developing new materials. However, challenges still exist: small dataset is common for most tasks; new datasets, special descriptors and specific models need to be built from scratch when facing a new task; knowledge cannot be readily transferre...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/cb9c16f84ac54c0ca80356bf9df48132 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|