A general and transferable deep learning framework for predicting phase formation in materials

Abstract Machine learning has been widely exploited in developing new materials. However, challenges still exist: small dataset is common for most tasks; new datasets, special descriptors and specific models need to be built from scratch when facing a new task; knowledge cannot be readily transferre...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Shuo Feng, Huadong Fu, Huiyu Zhou, Yuan Wu, Zhaoping Lu, Hongbiao Dong
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/cb9c16f84ac54c0ca80356bf9df48132
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!