Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study

Summary: Background: Kidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marc Raynaud, PhD, Olivier Aubert, MD, Gillian Divard, MD, Peter P Reese, ProfMD, Nassim Kamar, ProfMD, Daniel Yoo, MPH, Chen-Shan Chin, PhD, Élodie Bailly, MD, Matthias Buchler, ProfMD, Marc Ladrière, ProfMD, Moglie Le Quintrec, ProfMD, Michel Delahousse, ProfMD, Ivana Juric, MD, Nikolina Basic-Jukic, ProfMD, Marta Crespo, ProfMD, Helio Tedesco Silva, Jr, ProfMD, Kamilla Linhares, MD, Maria Cristina Ribeiro de Castro, ProfMD, Gervasio Soler Pujol, ProfMD, Jean-Philippe Empana, ProfMD, Camilo Ulloa, ProfMD, Enver Akalin, ProfMD, Georg Böhmig, ProfMD, Edmund Huang, MD, Mark D Stegall, ProfMD, Andrew J Bentall, ProfMD, Robert A Montgomery, ProfMD, Stanley C Jordan, ProfMD, Rainer Oberbauer, ProfMD, Dorry L Segev, ProfMD, John J Friedewald, ProfMD, Xavier Jouven, ProfMD, Christophe Legendre, ProfMD, Carmen Lefaucheur, ProfMD, Alexandre Loupy, ProfMD
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/cb9de491fcba4238b25f7cfc45add677
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cb9de491fcba4238b25f7cfc45add677
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Marc Raynaud, PhD
Olivier Aubert, MD
Gillian Divard, MD
Peter P Reese, ProfMD
Nassim Kamar, ProfMD
Daniel Yoo, MPH
Chen-Shan Chin, PhD
Élodie Bailly, MD
Matthias Buchler, ProfMD
Marc Ladrière, ProfMD
Moglie Le Quintrec, ProfMD
Michel Delahousse, ProfMD
Ivana Juric, MD
Nikolina Basic-Jukic, ProfMD
Marta Crespo, ProfMD
Helio Tedesco Silva, Jr, ProfMD
Kamilla Linhares, MD
Maria Cristina Ribeiro de Castro, ProfMD
Gervasio Soler Pujol, ProfMD
Jean-Philippe Empana, ProfMD
Camilo Ulloa, ProfMD
Enver Akalin, ProfMD
Georg Böhmig, ProfMD
Edmund Huang, MD
Mark D Stegall, ProfMD
Andrew J Bentall, ProfMD
Robert A Montgomery, ProfMD
Stanley C Jordan, ProfMD
Rainer Oberbauer, ProfMD
Dorry L Segev, ProfMD
John J Friedewald, ProfMD
Xavier Jouven, ProfMD
Christophe Legendre, ProfMD
Carmen Lefaucheur, ProfMD
Alexandre Loupy, ProfMD
Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
description Summary: Background: Kidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data. Methods: In this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891. Findings: 13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840–0·875]). Interpretation: Because of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting. Funding: MSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.
format article
author Marc Raynaud, PhD
Olivier Aubert, MD
Gillian Divard, MD
Peter P Reese, ProfMD
Nassim Kamar, ProfMD
Daniel Yoo, MPH
Chen-Shan Chin, PhD
Élodie Bailly, MD
Matthias Buchler, ProfMD
Marc Ladrière, ProfMD
Moglie Le Quintrec, ProfMD
Michel Delahousse, ProfMD
Ivana Juric, MD
Nikolina Basic-Jukic, ProfMD
Marta Crespo, ProfMD
Helio Tedesco Silva, Jr, ProfMD
Kamilla Linhares, MD
Maria Cristina Ribeiro de Castro, ProfMD
Gervasio Soler Pujol, ProfMD
Jean-Philippe Empana, ProfMD
Camilo Ulloa, ProfMD
Enver Akalin, ProfMD
Georg Böhmig, ProfMD
Edmund Huang, MD
Mark D Stegall, ProfMD
Andrew J Bentall, ProfMD
Robert A Montgomery, ProfMD
Stanley C Jordan, ProfMD
Rainer Oberbauer, ProfMD
Dorry L Segev, ProfMD
John J Friedewald, ProfMD
Xavier Jouven, ProfMD
Christophe Legendre, ProfMD
Carmen Lefaucheur, ProfMD
Alexandre Loupy, ProfMD
author_facet Marc Raynaud, PhD
Olivier Aubert, MD
Gillian Divard, MD
Peter P Reese, ProfMD
Nassim Kamar, ProfMD
Daniel Yoo, MPH
Chen-Shan Chin, PhD
Élodie Bailly, MD
Matthias Buchler, ProfMD
Marc Ladrière, ProfMD
Moglie Le Quintrec, ProfMD
Michel Delahousse, ProfMD
Ivana Juric, MD
Nikolina Basic-Jukic, ProfMD
Marta Crespo, ProfMD
Helio Tedesco Silva, Jr, ProfMD
Kamilla Linhares, MD
Maria Cristina Ribeiro de Castro, ProfMD
Gervasio Soler Pujol, ProfMD
Jean-Philippe Empana, ProfMD
Camilo Ulloa, ProfMD
Enver Akalin, ProfMD
Georg Böhmig, ProfMD
Edmund Huang, MD
Mark D Stegall, ProfMD
Andrew J Bentall, ProfMD
Robert A Montgomery, ProfMD
Stanley C Jordan, ProfMD
Rainer Oberbauer, ProfMD
Dorry L Segev, ProfMD
John J Friedewald, ProfMD
Xavier Jouven, ProfMD
Christophe Legendre, ProfMD
Carmen Lefaucheur, ProfMD
Alexandre Loupy, ProfMD
author_sort Marc Raynaud, PhD
title Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
title_short Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
title_full Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
title_fullStr Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
title_full_unstemmed Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
title_sort dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
publisher Elsevier
publishDate 2021
url https://doaj.org/article/cb9de491fcba4238b25f7cfc45add677
work_keys_str_mv AT marcraynaudphd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT olivieraubertmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT gilliandivardmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT peterpreeseprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT nassimkamarprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT danielyoomph dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT chenshanchinphd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT elodiebaillymd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT matthiasbuchlerprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT marcladriereprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT moglielequintrecprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT micheldelahousseprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT ivanajuricmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT nikolinabasicjukicprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT martacrespoprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT heliotedescosilvajrprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT kamillalinharesmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT mariacristinaribeirodecastroprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT gervasiosolerpujolprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT jeanphilippeempanaprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT camiloulloaprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT enverakalinprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT georgbohmigprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT edmundhuangmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT markdstegallprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT andrewjbentallprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT robertamontgomeryprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT stanleycjordanprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT raineroberbauerprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT dorrylsegevprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT johnjfriedewaldprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT xavierjouvenprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT christophelegendreprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT carmenlefaucheurprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
AT alexandreloupyprofmd dynamicpredictionofrenalsurvivalamongdeeplyphenotypedkidneytransplantrecipientsusingartificialintelligenceanobservationalinternationalmulticohortstudy
_version_ 1718416001807155200
spelling oai:doaj.org-article:cb9de491fcba4238b25f7cfc45add6772021-11-24T04:33:30ZDynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study2589-750010.1016/S2589-7500(21)00209-0https://doaj.org/article/cb9de491fcba4238b25f7cfc45add6772021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589750021002090https://doaj.org/toc/2589-7500Summary: Background: Kidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data. Methods: In this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891. Findings: 13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840–0·875]). Interpretation: Because of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting. Funding: MSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.Marc Raynaud, PhDOlivier Aubert, MDGillian Divard, MDPeter P Reese, ProfMDNassim Kamar, ProfMDDaniel Yoo, MPHChen-Shan Chin, PhDÉlodie Bailly, MDMatthias Buchler, ProfMDMarc Ladrière, ProfMDMoglie Le Quintrec, ProfMDMichel Delahousse, ProfMDIvana Juric, MDNikolina Basic-Jukic, ProfMDMarta Crespo, ProfMDHelio Tedesco Silva, Jr, ProfMDKamilla Linhares, MDMaria Cristina Ribeiro de Castro, ProfMDGervasio Soler Pujol, ProfMDJean-Philippe Empana, ProfMDCamilo Ulloa, ProfMDEnver Akalin, ProfMDGeorg Böhmig, ProfMDEdmund Huang, MDMark D Stegall, ProfMDAndrew J Bentall, ProfMDRobert A Montgomery, ProfMDStanley C Jordan, ProfMDRainer Oberbauer, ProfMDDorry L Segev, ProfMDJohn J Friedewald, ProfMDXavier Jouven, ProfMDChristophe Legendre, ProfMDCarmen Lefaucheur, ProfMDAlexandre Loupy, ProfMDElsevierarticleComputer applications to medicine. Medical informaticsR858-859.7ENThe Lancet: Digital Health, Vol 3, Iss 12, Pp e795-e805 (2021)