LCBRG: A lane-level road cluster mining algorithm with bidirectional region growing
Lane-level road cluster is a most representative phenomenon in road networks and is vital to spatial data mining, cartographic generalization, and data integration. In this article, a lane-level road cluster recognition method was proposed. First, the conception of lane-level road cluster and our mo...
Guardado en:
Autores principales: | Gong Xianyong, Wu Fang, Xing Ruixing, Du Jiawei, Liu Chengyi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cba31085fd07428a99ef08ecdb66ad99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ego-Lane Index Estimation Based on Lane-Level Map and LiDAR Road Boundary Detection
por: Baoguo Yu, et al.
Publicado: (2021) -
Identifying the density of grassland fire points with kernel density estimation based on spatial distribution characteristics
por: Shuo Zhen, et al.
Publicado: (2021) -
Spatial modeling of forest fires in Mexico: an integration of two data sources
por: Zúñiga-Vásquez,José Manuel, et al.
Publicado: (2017) -
ROADLANE—The Modular Framework to Support Recognition Algorithms of Road Lane Markings
por: Felipe Franco, et al.
Publicado: (2021) -
Spatially varying effects of measured confounding variables on disease risk
por: Chih-Chieh Wu, et al.
Publicado: (2021)