Picomolar Detection of Hydrogen Peroxide using Enzyme-free Inorganic Nanoparticle-based Sensor
Abstract A philosophical shift has occurred in the field of biomedical sciences from treatment of late-stage disease symptoms to early detection and prevention. Ceria nanoparticles (CNPs) have been demonstrated to neutralize free radical chemical species associated with many life-threatening disease...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cba56e62a741437bb5874cc7857a7480 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract A philosophical shift has occurred in the field of biomedical sciences from treatment of late-stage disease symptoms to early detection and prevention. Ceria nanoparticles (CNPs) have been demonstrated to neutralize free radical chemical species associated with many life-threatening disease states such as cancers and neurodegenerative diseases by undergoing redox changes (Ce3+ ↔ Ce4+). Herein, we investigate the electrochemical response of multi-valent CNPs in presence of hydrogen peroxide and demonstrate an enzyme-free CNP-based biosensor capable of ultra-low (limit of quantitation: 0.1 pM) detection. Several preparations of CNPs with varying Ce3+:Ce4+ are produced and are analyzed by electrochemical methods. We find that an increasing magnitude of response in cyclic voltammetry and chronoamperometry correlates with increasing Ce4+ relative to Ce3+ and utilize this finding in the design of the sensor platform. The sensor retains sensitivity across a range of pH’s and temperatures, wherein enzyme-based sensors will not function, and in blood serum: reflecting selectivity and robustness as a potential implantable biomedical device. |
---|