Automatic Localization and Count of Agricultural Crop Pests Based on an Improved Deep Learning Pipeline
Abstract Insect pests are known to be a major cause of damage to agricultural crops. This paper proposed a deep learning-based pipeline for localization and counting of agricultural pests in images by self-learning saliency feature maps. Our method integrates a convolutional neural network (CNN) of...
Guardado en:
Autores principales: | Weilu Li, Peng Chen, Bing Wang, Chengjun Xie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cbf85683fea8493ea6a1cbf6c76672dc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic cell counting from stimulated Raman imaging using deep learning.
por: Qianqian Zhang, et al.
Publicado: (2021) -
Improving the Classification of Alzheimer’s Disease Using Hybrid Gene Selection Pipeline and Deep Learning
por: Nivedhitha Mahendran, et al.
Publicado: (2021) -
A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos
por: Wen Li, et al.
Publicado: (2021) -
Automatic identification of charcoal origin based on deep learning
por: Rodrigues de Oliveira Neto,Ricardo, et al.
Publicado: (2021) -
Automatic Optical Measurement and Control of Benzene and Benzenoids in Natural Gas Pipelines
por: Rossana Galassi, et al.
Publicado: (2021)