Semi-automated tracking of pain in critical care patients using artificial intelligence: a retrospective observational study
Abstract Monitoring the pain intensity in critically ill patients is crucial because intense pain can cause adverse events, including poor survival rates; however, continuous pain evaluation is difficult. Vital signs have traditionally been considered ineffective in pain assessment; nevertheless, th...
Guardado en:
Autores principales: | Naoya Kobayashi, Takuya Shiga, Saori Ikumi, Kazuki Watanabe, Hitoshi Murakami, Masanori Yamauchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc04a7db7f794b2081fe7c26f39d3738 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial intelligence for classifying uncertain images by humans in determining choroidal vascular running pattern and comparisons with automated classification between artificial intelligence.
por: Shozo Sonoda, et al.
Publicado: (2021) -
An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain
por: Anette Paulina Vistoso Monreal, et al.
Publicado: (2021) -
Various perspectives of labor and human resources challenges and changes due to automation and artificial intelligence.
por: Jessica Bayón Pérez, et al.
Publicado: (2019) -
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
por: Shinichi Goto, et al.
Publicado: (2021) - Artificial intelligence