A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks
Abstract DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc0874a55e194e5880efeaff330eb613 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc0874a55e194e5880efeaff330eb613 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc0874a55e194e5880efeaff330eb6132021-12-02T11:53:02ZA role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks10.1038/s41598-017-01185-62045-2322https://doaj.org/article/cc0874a55e194e5880efeaff330eb6132017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01185-6https://doaj.org/toc/2045-2322Abstract DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs.Enas R. Abu-ZhayiaHanan Khoury-HaddadNoga Guttmann-RavivRaphael SerruyaNayef JarrousNabieh AyoubNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Enas R. Abu-Zhayia Hanan Khoury-Haddad Noga Guttmann-Raviv Raphael Serruya Nayef Jarrous Nabieh Ayoub A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
description |
Abstract DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs. |
format |
article |
author |
Enas R. Abu-Zhayia Hanan Khoury-Haddad Noga Guttmann-Raviv Raphael Serruya Nayef Jarrous Nabieh Ayoub |
author_facet |
Enas R. Abu-Zhayia Hanan Khoury-Haddad Noga Guttmann-Raviv Raphael Serruya Nayef Jarrous Nabieh Ayoub |
author_sort |
Enas R. Abu-Zhayia |
title |
A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
title_short |
A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
title_full |
A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
title_fullStr |
A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
title_full_unstemmed |
A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks |
title_sort |
role of human rnase p subunits, rpp29 and rpp21, in homology directed-repair of double-strand breaks |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/cc0874a55e194e5880efeaff330eb613 |
work_keys_str_mv |
AT enasrabuzhayia aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT hanankhouryhaddad aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nogaguttmannraviv aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT raphaelserruya aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nayefjarrous aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nabiehayoub aroleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT enasrabuzhayia roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT hanankhouryhaddad roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nogaguttmannraviv roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT raphaelserruya roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nayefjarrous roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks AT nabiehayoub roleofhumanrnasepsubunitsrpp29andrpp21inhomologydirectedrepairofdoublestrandbreaks |
_version_ |
1718394894236516352 |