Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling
Upscaling in situ carbon flux measurements using remotely sensed and meteorological observations in a machine learning algorithm leads to improved estimates of average uptake, and interannual variability in global drylands.
Guardado en:
Autores principales: | Mallory L. Barnes, Martha M. Farella, Russell L. Scott, David J. P. Moore, Guillermo E. Ponce-Campos, Joel A. Biederman, Natasha MacBean, Marcy E. Litvak, David D. Breshears |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc09b7906fa14313a1c796d37d5d2281 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Process-based analysis of terrestrial carbon flux predictability
por: I. Dunkl, et al.
Publicado: (2021) -
Multi‐Order Carbon Spectral Imager: A Sensor Concept for Carbon Cycle Investigations
por: Jeffrey L. Hall, et al.
Publicado: (2019) -
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
por: E. A. Quichimbo, et al.
Publicado: (2021) -
A Role for Drylands in a Carbon Neutral World?
por: Niall P. Hanan, et al.
Publicado: (2021) -
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
por: K. Kvale, et al.
Publicado: (2021)