Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen
The pH-responsive hydrogels were obtained through successive carboxymethylation and phosphorylase elongatation of phytoglycogen and their structure and functional characterizations were investigated. Phytoglycogen (PG) was first carboxymethylated to obtain carboxymethyl phytoglycogen (CM-PG) with de...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc11661cc2ff491dab791994ad970d12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc11661cc2ff491dab791994ad970d12 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc11661cc2ff491dab791994ad970d122021-11-25T17:33:52ZFabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen10.3390/foods101126532304-8158https://doaj.org/article/cc11661cc2ff491dab791994ad970d122021-11-01T00:00:00Zhttps://www.mdpi.com/2304-8158/10/11/2653https://doaj.org/toc/2304-8158The pH-responsive hydrogels were obtained through successive carboxymethylation and phosphorylase elongatation of phytoglycogen and their structure and functional characterizations were investigated. Phytoglycogen (PG) was first carboxymethylated to obtain carboxymethyl phytoglycogen (CM-PG) with degree of substitution (DS) at 0.15, 0.25, 0.30, and 0.40, respectively. Iodine staining and X-ray diffraction analysis suggested that the linear glucan chains were successfully phosphorylase-elongated from the non-reducing ends at the CM-PG surface and assembled into the double helical segments, leading to formation of the hydrogel. The DS of CM-PG significantly influenced elongation of glucan chains. Specifically, fewer glucan chains were elongated for CM-PG with higher DS and the final glucan chains were shorter, resulting in lower gelation rate of chain-elongated CM-PG and lower firmness of the corresponding hydrogels. Scanning electron microscope observed that the hydrogels exhibited a porous and interconnected morphology. The swelling ratio and volume of hydrogels was low at pH 3–5 and then became larger at pH 6–8 due to electrostatic repulsion resulting from deprotonated carboxymethyl groups. Particularly, the hydrogel prepared from chain-elongated CM-PG (DS = 0.25) showed the highest sensitivity to pH. These results suggested that phosphorylase-treated CM-PG formed the pH-responsive hydrogel and that the elongation degree and the properties of hydrogels depended on the carboxymethylation degree. Thus, it was inferred that these hydrogels was a potential carrier system of bioactive substances for their targeted releasing in small intestine.Xiuting HuYao LiuYimei ChenTao ZhangMing MiaoMDPI AGarticlephytoglycogenpH-responsive hydrogelchain elongationstructurecharacterizationChemical technologyTP1-1185ENFoods, Vol 10, Iss 2653, p 2653 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
phytoglycogen pH-responsive hydrogel chain elongation structure characterization Chemical technology TP1-1185 |
spellingShingle |
phytoglycogen pH-responsive hydrogel chain elongation structure characterization Chemical technology TP1-1185 Xiuting Hu Yao Liu Yimei Chen Tao Zhang Ming Miao Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
description |
The pH-responsive hydrogels were obtained through successive carboxymethylation and phosphorylase elongatation of phytoglycogen and their structure and functional characterizations were investigated. Phytoglycogen (PG) was first carboxymethylated to obtain carboxymethyl phytoglycogen (CM-PG) with degree of substitution (DS) at 0.15, 0.25, 0.30, and 0.40, respectively. Iodine staining and X-ray diffraction analysis suggested that the linear glucan chains were successfully phosphorylase-elongated from the non-reducing ends at the CM-PG surface and assembled into the double helical segments, leading to formation of the hydrogel. The DS of CM-PG significantly influenced elongation of glucan chains. Specifically, fewer glucan chains were elongated for CM-PG with higher DS and the final glucan chains were shorter, resulting in lower gelation rate of chain-elongated CM-PG and lower firmness of the corresponding hydrogels. Scanning electron microscope observed that the hydrogels exhibited a porous and interconnected morphology. The swelling ratio and volume of hydrogels was low at pH 3–5 and then became larger at pH 6–8 due to electrostatic repulsion resulting from deprotonated carboxymethyl groups. Particularly, the hydrogel prepared from chain-elongated CM-PG (DS = 0.25) showed the highest sensitivity to pH. These results suggested that phosphorylase-treated CM-PG formed the pH-responsive hydrogel and that the elongation degree and the properties of hydrogels depended on the carboxymethylation degree. Thus, it was inferred that these hydrogels was a potential carrier system of bioactive substances for their targeted releasing in small intestine. |
format |
article |
author |
Xiuting Hu Yao Liu Yimei Chen Tao Zhang Ming Miao |
author_facet |
Xiuting Hu Yao Liu Yimei Chen Tao Zhang Ming Miao |
author_sort |
Xiuting Hu |
title |
Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
title_short |
Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
title_full |
Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
title_fullStr |
Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
title_full_unstemmed |
Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen |
title_sort |
fabrication, structure and functional characterizations of ph-responsive hydrogels derived from phytoglycogen |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/cc11661cc2ff491dab791994ad970d12 |
work_keys_str_mv |
AT xiutinghu fabricationstructureandfunctionalcharacterizationsofphresponsivehydrogelsderivedfromphytoglycogen AT yaoliu fabricationstructureandfunctionalcharacterizationsofphresponsivehydrogelsderivedfromphytoglycogen AT yimeichen fabricationstructureandfunctionalcharacterizationsofphresponsivehydrogelsderivedfromphytoglycogen AT taozhang fabricationstructureandfunctionalcharacterizationsofphresponsivehydrogelsderivedfromphytoglycogen AT mingmiao fabricationstructureandfunctionalcharacterizationsofphresponsivehydrogelsderivedfromphytoglycogen |
_version_ |
1718412255049023488 |