Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation
Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc195d0033b14b468233d2d515c0acba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc195d0033b14b468233d2d515c0acba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc195d0033b14b468233d2d515c0acba2021-11-11T18:41:16ZDevelopment of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation10.3390/polym132136112073-4360https://doaj.org/article/cc195d0033b14b468233d2d515c0acba2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4360/13/21/3611https://doaj.org/toc/2073-4360Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), β-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering.Muhammad Umar Aslam KhanSaiful Izwan Abd RazakMohamed Nainar Mohamed AnsariRazauden Mohamed ZulkifliNurliyana Ahmad ZawawiMuhammad ArshadMDPI AGarticlebiopolymerbiomaterialsbiodegradationspolysaccharidebone tissue engineeringOrganic chemistryQD241-441ENPolymers, Vol 13, Iss 3611, p 3611 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
biopolymer biomaterials biodegradations polysaccharide bone tissue engineering Organic chemistry QD241-441 |
spellingShingle |
biopolymer biomaterials biodegradations polysaccharide bone tissue engineering Organic chemistry QD241-441 Muhammad Umar Aslam Khan Saiful Izwan Abd Razak Mohamed Nainar Mohamed Ansari Razauden Mohamed Zulkifli Nurliyana Ahmad Zawawi Muhammad Arshad Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
description |
Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), β-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering. |
format |
article |
author |
Muhammad Umar Aslam Khan Saiful Izwan Abd Razak Mohamed Nainar Mohamed Ansari Razauden Mohamed Zulkifli Nurliyana Ahmad Zawawi Muhammad Arshad |
author_facet |
Muhammad Umar Aslam Khan Saiful Izwan Abd Razak Mohamed Nainar Mohamed Ansari Razauden Mohamed Zulkifli Nurliyana Ahmad Zawawi Muhammad Arshad |
author_sort |
Muhammad Umar Aslam Khan |
title |
Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
title_short |
Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
title_full |
Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
title_fullStr |
Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
title_full_unstemmed |
Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and In Vitro Biocompatible Evaluation |
title_sort |
development of biodegradable bio-based composite for bone tissue engineering: synthesis, characterization and in vitro biocompatible evaluation |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/cc195d0033b14b468233d2d515c0acba |
work_keys_str_mv |
AT muhammadumaraslamkhan developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation AT saifulizwanabdrazak developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation AT mohamednainarmohamedansari developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation AT razaudenmohamedzulkifli developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation AT nurliyanaahmadzawawi developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation AT muhammadarshad developmentofbiodegradablebiobasedcompositeforbonetissueengineeringsynthesischaracterizationandinvitrobiocompatibleevaluation |
_version_ |
1718431789095059456 |