Irrigation has a higher impact on soil bacterial abundance, diversity and composition than nitrogen fertilization
Abstract The aim of this study was to assess the effects of irrigation frequency and nitrogen fertilization rate on the abundance, diversity, and composition of soil bacteria in winter wheat. Irrigation, but not nitrogen fertilization, significantly affected the bacterial alpha diversity index. Amon...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc196552651440fcbfaf8db2ccf24e61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The aim of this study was to assess the effects of irrigation frequency and nitrogen fertilization rate on the abundance, diversity, and composition of soil bacteria in winter wheat. Irrigation, but not nitrogen fertilization, significantly affected the bacterial alpha diversity index. Among the 50 phyla obtained in these treatments, Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria, Gemmatimonadetes, and Firmicutes were the predominant phyla. The LEfSe analysis of different treatments indicated that irrigation had a stronger effect on soil bacteria community composition than nitrogen fertilization. Moreover, the soil pH, moisture, available phosphorus (AP), and available potassium (AK) significantly correlated with the relative abundance of dominant bacteria at the phylum, genus, and operational taxonomic unit (OTU) levels. Overall, after three years of irrigation and fertilization treatments, the effect of irrigation on soil bacteria abundance, diversity, and composition of winter wheat was stronger than that of nitrogen fertilization, highlighting the importance of water availability for bacteria communities in semi-arid ecosystems. Inorganic and organic fertilizers should be applied in rotation. |
---|