A Review of Computer Vision Techniques in the Detection of Metal Failures
This paper considers and contrasts several computer vision techniques used to detect defects in metallic components during manufacturing or in service. Methodologies include statistical analysis, weighted entropy modification, Fourier transformations, neural networks, and deep learning. Such systems...
Guardado en:
Autores principales: | Fitzgerald Deborah, Fragoudakis Roselita |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc29d016fa294ae6aa0f135dab1673b5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A review of power system predictive failure model for resilience enhancement against hurricane events
por: Okeolu Samuel Omogoye, et al.
Publicado: (2021) -
Designing a knowledge management system for Naval Materials Failures
por: Melanitis Nikolaos, et al.
Publicado: (2021) -
Investigation of the Causes of Premature Failure of the Suspension and Brake System of Buses “Volgabus”
por: Popov A. V., et al.
Publicado: (2021) -
Computer-Aided Design of Intermittent Kinematics Mechanisms
por: Sobolev Alexander, et al.
Publicado: (2021) -
Practical Experience with the Methodology of Prediction of Corrosion-Fatigue Failures of Steam Turbine Rotating Blades
por: Kasl Josef, et al.
Publicado: (2021)