Mitochondrial Complex I activity signals antioxidant response through ERK5
Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant respo...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc2bb76d7c6941359df8d4c75d727c38 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc2bb76d7c6941359df8d4c75d727c382021-12-02T15:08:24ZMitochondrial Complex I activity signals antioxidant response through ERK510.1038/s41598-018-23884-42045-2322https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c382018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-23884-4https://doaj.org/toc/2045-2322Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.Abrar Ul Haq KhanNerea Allende-VegaDelphine GitenayJohan GaraudeDang-Nghiem VoSana BelkhalaSabine Gerbal-ChaloinClaire GondeauMartine Daujat-ChavanieuCécile DelettreStefania OrecchioniGiovanna TalaricoFrancesco BertoliniAlberto AnelJosé M. CuezvaJose A. EnriquezGuillaume CartronCharles-Henri LecellierJavier HernandezMartin VillalbaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-14 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Abrar Ul Haq Khan Nerea Allende-Vega Delphine Gitenay Johan Garaude Dang-Nghiem Vo Sana Belkhala Sabine Gerbal-Chaloin Claire Gondeau Martine Daujat-Chavanieu Cécile Delettre Stefania Orecchioni Giovanna Talarico Francesco Bertolini Alberto Anel José M. Cuezva Jose A. Enriquez Guillaume Cartron Charles-Henri Lecellier Javier Hernandez Martin Villalba Mitochondrial Complex I activity signals antioxidant response through ERK5 |
description |
Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS. |
format |
article |
author |
Abrar Ul Haq Khan Nerea Allende-Vega Delphine Gitenay Johan Garaude Dang-Nghiem Vo Sana Belkhala Sabine Gerbal-Chaloin Claire Gondeau Martine Daujat-Chavanieu Cécile Delettre Stefania Orecchioni Giovanna Talarico Francesco Bertolini Alberto Anel José M. Cuezva Jose A. Enriquez Guillaume Cartron Charles-Henri Lecellier Javier Hernandez Martin Villalba |
author_facet |
Abrar Ul Haq Khan Nerea Allende-Vega Delphine Gitenay Johan Garaude Dang-Nghiem Vo Sana Belkhala Sabine Gerbal-Chaloin Claire Gondeau Martine Daujat-Chavanieu Cécile Delettre Stefania Orecchioni Giovanna Talarico Francesco Bertolini Alberto Anel José M. Cuezva Jose A. Enriquez Guillaume Cartron Charles-Henri Lecellier Javier Hernandez Martin Villalba |
author_sort |
Abrar Ul Haq Khan |
title |
Mitochondrial Complex I activity signals antioxidant response through ERK5 |
title_short |
Mitochondrial Complex I activity signals antioxidant response through ERK5 |
title_full |
Mitochondrial Complex I activity signals antioxidant response through ERK5 |
title_fullStr |
Mitochondrial Complex I activity signals antioxidant response through ERK5 |
title_full_unstemmed |
Mitochondrial Complex I activity signals antioxidant response through ERK5 |
title_sort |
mitochondrial complex i activity signals antioxidant response through erk5 |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c38 |
work_keys_str_mv |
AT abrarulhaqkhan mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT nereaallendevega mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT delphinegitenay mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT johangaraude mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT dangnghiemvo mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT sanabelkhala mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT sabinegerbalchaloin mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT clairegondeau mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT martinedaujatchavanieu mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT ceciledelettre mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT stefaniaorecchioni mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT giovannatalarico mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT francescobertolini mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT albertoanel mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT josemcuezva mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT joseaenriquez mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT guillaumecartron mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT charleshenrilecellier mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT javierhernandez mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 AT martinvillalba mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5 |
_version_ |
1718388149458042880 |