Mitochondrial Complex I activity signals antioxidant response through ERK5

Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant respo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abrar Ul Haq Khan, Nerea Allende-Vega, Delphine Gitenay, Johan Garaude, Dang-Nghiem Vo, Sana Belkhala, Sabine Gerbal-Chaloin, Claire Gondeau, Martine Daujat-Chavanieu, Cécile Delettre, Stefania Orecchioni, Giovanna Talarico, Francesco Bertolini, Alberto Anel, José M. Cuezva, Jose A. Enriquez, Guillaume Cartron, Charles-Henri Lecellier, Javier Hernandez, Martin Villalba
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cc2bb76d7c6941359df8d4c75d727c38
record_format dspace
spelling oai:doaj.org-article:cc2bb76d7c6941359df8d4c75d727c382021-12-02T15:08:24ZMitochondrial Complex I activity signals antioxidant response through ERK510.1038/s41598-018-23884-42045-2322https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c382018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-23884-4https://doaj.org/toc/2045-2322Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.Abrar Ul Haq KhanNerea Allende-VegaDelphine GitenayJohan GaraudeDang-Nghiem VoSana BelkhalaSabine Gerbal-ChaloinClaire GondeauMartine Daujat-ChavanieuCécile DelettreStefania OrecchioniGiovanna TalaricoFrancesco BertoliniAlberto AnelJosé M. CuezvaJose A. EnriquezGuillaume CartronCharles-Henri LecellierJavier HernandezMartin VillalbaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-14 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Abrar Ul Haq Khan
Nerea Allende-Vega
Delphine Gitenay
Johan Garaude
Dang-Nghiem Vo
Sana Belkhala
Sabine Gerbal-Chaloin
Claire Gondeau
Martine Daujat-Chavanieu
Cécile Delettre
Stefania Orecchioni
Giovanna Talarico
Francesco Bertolini
Alberto Anel
José M. Cuezva
Jose A. Enriquez
Guillaume Cartron
Charles-Henri Lecellier
Javier Hernandez
Martin Villalba
Mitochondrial Complex I activity signals antioxidant response through ERK5
description Abstract Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
format article
author Abrar Ul Haq Khan
Nerea Allende-Vega
Delphine Gitenay
Johan Garaude
Dang-Nghiem Vo
Sana Belkhala
Sabine Gerbal-Chaloin
Claire Gondeau
Martine Daujat-Chavanieu
Cécile Delettre
Stefania Orecchioni
Giovanna Talarico
Francesco Bertolini
Alberto Anel
José M. Cuezva
Jose A. Enriquez
Guillaume Cartron
Charles-Henri Lecellier
Javier Hernandez
Martin Villalba
author_facet Abrar Ul Haq Khan
Nerea Allende-Vega
Delphine Gitenay
Johan Garaude
Dang-Nghiem Vo
Sana Belkhala
Sabine Gerbal-Chaloin
Claire Gondeau
Martine Daujat-Chavanieu
Cécile Delettre
Stefania Orecchioni
Giovanna Talarico
Francesco Bertolini
Alberto Anel
José M. Cuezva
Jose A. Enriquez
Guillaume Cartron
Charles-Henri Lecellier
Javier Hernandez
Martin Villalba
author_sort Abrar Ul Haq Khan
title Mitochondrial Complex I activity signals antioxidant response through ERK5
title_short Mitochondrial Complex I activity signals antioxidant response through ERK5
title_full Mitochondrial Complex I activity signals antioxidant response through ERK5
title_fullStr Mitochondrial Complex I activity signals antioxidant response through ERK5
title_full_unstemmed Mitochondrial Complex I activity signals antioxidant response through ERK5
title_sort mitochondrial complex i activity signals antioxidant response through erk5
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/cc2bb76d7c6941359df8d4c75d727c38
work_keys_str_mv AT abrarulhaqkhan mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT nereaallendevega mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT delphinegitenay mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT johangaraude mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT dangnghiemvo mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT sanabelkhala mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT sabinegerbalchaloin mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT clairegondeau mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT martinedaujatchavanieu mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT ceciledelettre mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT stefaniaorecchioni mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT giovannatalarico mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT francescobertolini mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT albertoanel mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT josemcuezva mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT joseaenriquez mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT guillaumecartron mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT charleshenrilecellier mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT javierhernandez mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
AT martinvillalba mitochondrialcomplexiactivitysignalsantioxidantresponsethrougherk5
_version_ 1718388149458042880