A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses.
Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses-such as the analysis of longitudinal data-reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of long...
Guardado en:
Autores principales: | Heidi Seibold, Severin Czerny, Siona Decke, Roman Dieterle, Thomas Eder, Steffen Fohr, Nico Hahn, Rabea Hartmann, Christoph Heindl, Philipp Kopper, Dario Lepke, Verena Loidl, Maximilian Mandl, Sarah Musiol, Jessica Peter, Alexander Piehler, Elio Rojas, Stefanie Schmid, Hannah Schmidt, Melissa Schmoll, Lennart Schneider, Xiao-Yin To, Viet Tran, Antje Völker, Moritz Wagner, Joshua Wagner, Maria Waize, Hannah Wecker, Rui Yang, Simone Zellner, Malte Nalenz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc4ab404fc9743df8c8df776f92f6ace |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PLOS genetics
Publicado: (2005) -
PLOS pathogens
Publicado: (2005) - PloS one.
-
PLoS biology
Publicado: (2003) -
PLoS medicine
Publicado: (2004)