Review on Deep Learning Methods for Chest X-Ray based Abnormality Detection and Thoracic Pathology Classification
Backed by more powerful computational resources and optimized training routines, deep learning models have proven unprecedented performance and several benefits to extract information from chest X-ray data. This is one of the most common imaging exams, whose increasing demand is reflected in the agg...
Guardado en:
Autores principales: | Joana Rocha, Ana Maria Mendonça, Aurélio Campilho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Universidade do Porto
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc58f799c99044c88c71649fc64669d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021) -
Multi-View Feature Fusion Based Four Views Model for Mammogram Classification Using Convolutional Neural Network
por: Hasan Nasir Khan, et al.
Publicado: (2019) -
Chest Radiographs and CT Findings during Healthcare Workers’ Tuberculosis Screening Using Interferon- Gamma Release Assay: Retrospective Observational Study
por: Ye Ra Choi, et al.
Publicado: (2021) -
Sectional Evaluation of Anatomic Structures in Cat (Felis catus) Thoracic Cavity by Computed Tomography Imaging and Silicone Plastination Methods
por: Akgün,Remzi Orkun, et al.
Publicado: (2018) -
Predictive Factors of Ventilatory Support in Chest Trauma
por: Silvia Fattori, et al.
Publicado: (2021)