Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning

Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Prasanna V. Balachandran, Benjamin Kowalski, Alp Sehirlioglu, Turab Lookman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cc660229b2ca4dd09848e4c55c3589a5
record_format dspace
spelling oai:doaj.org-article:cc660229b2ca4dd09848e4c55c3589a52021-12-02T15:34:45ZExperimental search for high-temperature ferroelectric perovskites guided by two-step machine learning10.1038/s41467-018-03821-92041-1723https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a52018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03821-9https://doaj.org/toc/2041-1723Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature.Prasanna V. BalachandranBenjamin KowalskiAlp SehirliogluTurab LookmanNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Prasanna V. Balachandran
Benjamin Kowalski
Alp Sehirlioglu
Turab Lookman
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
description Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature.
format article
author Prasanna V. Balachandran
Benjamin Kowalski
Alp Sehirlioglu
Turab Lookman
author_facet Prasanna V. Balachandran
Benjamin Kowalski
Alp Sehirlioglu
Turab Lookman
author_sort Prasanna V. Balachandran
title Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
title_short Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
title_full Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
title_fullStr Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
title_full_unstemmed Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
title_sort experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5
work_keys_str_mv AT prasannavbalachandran experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning
AT benjaminkowalski experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning
AT alpsehirlioglu experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning
AT turablookman experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning
_version_ 1718386745453576192