Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc660229b2ca4dd09848e4c55c3589a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc660229b2ca4dd09848e4c55c3589a52021-12-02T15:34:45ZExperimental search for high-temperature ferroelectric perovskites guided by two-step machine learning10.1038/s41467-018-03821-92041-1723https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a52018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03821-9https://doaj.org/toc/2041-1723Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature.Prasanna V. BalachandranBenjamin KowalskiAlp SehirliogluTurab LookmanNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Prasanna V. Balachandran Benjamin Kowalski Alp Sehirlioglu Turab Lookman Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
description |
Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroelectric Curie temperature. |
format |
article |
author |
Prasanna V. Balachandran Benjamin Kowalski Alp Sehirlioglu Turab Lookman |
author_facet |
Prasanna V. Balachandran Benjamin Kowalski Alp Sehirlioglu Turab Lookman |
author_sort |
Prasanna V. Balachandran |
title |
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
title_short |
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
title_full |
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
title_fullStr |
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
title_full_unstemmed |
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
title_sort |
experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5 |
work_keys_str_mv |
AT prasannavbalachandran experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning AT benjaminkowalski experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning AT alpsehirlioglu experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning AT turablookman experimentalsearchforhightemperatureferroelectricperovskitesguidedbytwostepmachinelearning |
_version_ |
1718386745453576192 |