Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
Experimental search for high-temperature ferroelectric perovskites is challenging due to the vast chemical space and lack of predictive guidelines. Here the authors demonstrate a two-step machine learning approach to sequentially guide experiments in search of promising perovskites with high ferroel...
Enregistré dans:
| Auteurs principaux: | Prasanna V. Balachandran, Benjamin Kowalski, Alp Sehirlioglu, Turab Lookman |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2018
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/cc660229b2ca4dd09848e4c55c3589a5 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accelerated search for materials with targeted properties by adaptive design
par: Dezhen Xue, et autres
Publié: (2016) -
Learning from data to design functional materials without inversion symmetry
par: Prasanna V. Balachandran, et autres
Publié: (2017) -
Recipes for improper ferroelectricity in molecular perovskites
par: Hanna L. B. Boström, et autres
Publié: (2018) -
Harnessing machine learning to guide phylogenetic-tree search algorithms
par: Dana Azouri, et autres
Publié: (2021) -
Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field
par: D. Karpov, et autres
Publié: (2017)