Design flood estimation for global river networks based on machine learning models
<p>Design flood estimation is a fundamental task in hydrology. In this research, we propose a machine-learning-based approach to estimate design floods globally. This approach involves three stages: (i) estimating at-site flood frequency curves for global gauging stations using the Anderson–Da...
Guardado en:
Autores principales: | G. Zhao, P. Bates, J. Neal, B. Pang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc686fbb87c74b4680dbf28a08067fb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
por: P. Su, et al.
Publicado: (2021) -
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
por: G. Benito, et al.
Publicado: (2021) -
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
por: J. Chen, et al.
Publicado: (2021) -
Evaluating different machine learning methods to simulate runoff from extensive green roofs
por: E. M. H. Abdalla, et al.
Publicado: (2021) -
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
por: Y. Yang, et al.
Publicado: (2021)