Design flood estimation for global river networks based on machine learning models
<p>Design flood estimation is a fundamental task in hydrology. In this research, we propose a machine-learning-based approach to estimate design floods globally. This approach involves three stages: (i) estimating at-site flood frequency curves for global gauging stations using the Anderson–Da...
Enregistré dans:
Auteurs principaux: | G. Zhao, P. Bates, J. Neal, B. Pang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Copernicus Publications
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cc686fbb87c74b4680dbf28a08067fb8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
par: P. Su, et autres
Publié: (2021) -
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
par: G. Benito, et autres
Publié: (2021) -
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
par: J. Chen, et autres
Publié: (2021) -
Evaluating different machine learning methods to simulate runoff from extensive green roofs
par: E. M. H. Abdalla, et autres
Publié: (2021) -
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
par: Y. Yang, et autres
Publié: (2021)