Spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy

Abstract We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. The n–th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the el...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guo Liang, Zhiping Dai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/cc6ac41b10804da68f96286b65addbef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We introduce a kind of the spiraling elliptic Hermite-Gaussian solitons in nonlocal nonlinear media without anisotropy, which carries the orbital angular momentum and can rotate in the transverse. The n–th mode of the spiraling elliptic Hermite-Gaussian solitons has n holes nested in the elliptic profile. The analytical spiraling elliptic Hermite-Gaussian solitons solutions are obtained based on the variational approach, which agree well with the numerical simulations. It is found that the critical power and the critical angular velocity for the spiraling elliptic Hermite-Gaussian solitons are the same as the counterpart of the ground mode.