Deep Machine Learning Model Trade-Offs for Malaria Elimination in Resource-Constrained Locations
The success of deep machine learning (DML) models in gaming and robotics has increased its trial in clinical and public healthcare solutions. In applying DML to healthcare problems, a special challenge of inadequate electrical energy and computing resources exists in regional and developing areas of...
Guardado en:
Autores principales: | Peter U. Eze, Clement O. Asogwa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc769e675a914f41b3f79f2f735f0751 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Baseline malaria prevalence at the targeted pre-elimination districts in Ethiopia
por: Desalegn Nega, et al.
Publicado: (2021) -
Residual malaria among migrant workers in Myanmar: why still persistent and how to eliminate it?
por: Myat Htut Nyunt, et al.
Publicado: (2021) -
Malaria research and treatment
Publicado: (2010) - Malaria journal
-
Optimisation of the FE Model Based on the No-Load Test Measurement for Estimating Electromagnetic Parameters of an Induction Motor Equivalent Circuit Including the Rotor Deep-Bar Effect
por: Jaroslaw Rolek, et al.
Publicado: (2021)