Machine learning to predict the source of campylobacteriosis using whole genome data.
Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat,...
Guardado en:
Autores principales: | Nicolas Arning, Samuel K Sheppard, Sion Bayliss, David A Clifton, Daniel J Wilson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc79937e580e4d55b76229528d8bdca3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages.
por: Jessica K Calland, et al.
Publicado: (2021) -
Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing.
por: Sumitra Mohan, et al.
Publicado: (2014) -
Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii.
por: Setsuko Wakao, et al.
Publicado: (2021) -
Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola.
por: Eva H Stukenbrock, et al.
Publicado: (2010) -
Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis.
por: Pooja Biswas, et al.
Publicado: (2021)