Railway Foreign Object Tracking Based on Correlation Filtering of Optimized Regularization Model
Aiming at problems such as the untrustworthy association between spatial regularization weight and intrusive foreign object in complex railway scenes, as well as the degradation of correlation filter model, fully excavate the expressive ability of deep space features, and a foreign object tracking a...
Enregistré dans:
Auteurs principaux: | Tao Hou, Yannan Chen, Caiwen Bao, Yuhu Chen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Tamkang University Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cc829408d0a14d58aff3eaf7b38fad5d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Anti-Drift Visual Object Tracking Algorithm Based on Sparse Response and Adaptive Spatial-Temporal Context-Aware
par: Yinqiang Su, et autres
Publié: (2021) -
Efficient Online Tracking-by-Detection With Kalman Filter
par: Siyuan Chen, et autres
Publié: (2021) -
Track geometry estimation of a conventional railway from car-body acceleration measurement
par: Mai ODASHIMA, et autres
Publié: (2017) -
Modeling and Filtering for Tracking Maneuvering Targets
par: Sadiq J. Abou-Loukh
Publié: (2009) -
Numerical Investigation of HMA Effect on Dynamic Behavoiur of Railway Track Transition Zone
par: Alireza Gharighoran, et autres
Publié: (2018)