Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
Since the discovery that machine learning can be used to effectively detect Android malware, many studies on machine learning-based malware detection techniques have been conducted. Several methods based on feature selection, particularly genetic algorithms, have been proposed to increase the perfor...
Enregistré dans:
Auteurs principaux: | Jaehyeong Lee, Hyuk Jang, Sungmin Ha, Yourim Yoon |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cc88efdfb8064a069f3b63b14def0b80 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
par: Abdulaziz Alzubaidi
Publié: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
par: Altyeb Taha, et autres
Publié: (2021) -
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
par: Minki Kim, et autres
Publié: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
par: Wei Wang, et autres
Publié: (2018) -
Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification
par: Byunghyun Baek, et autres
Publié: (2021)