Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
Since the discovery that machine learning can be used to effectively detect Android malware, many studies on machine learning-based malware detection techniques have been conducted. Several methods based on feature selection, particularly genetic algorithms, have been proposed to increase the perfor...
Guardado en:
Autores principales: | Jaehyeong Lee, Hyuk Jang, Sungmin Ha, Yourim Yoon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc88efdfb8064a069f3b63b14def0b80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
por: Minki Kim, et al.
Publicado: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification
por: Byunghyun Baek, et al.
Publicado: (2021)