Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cc8fef11520d4993b28755d78b9b08c0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cc8fef11520d4993b28755d78b9b08c02021-12-02T14:39:14ZDirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS10.1038/ncomms116962041-1723https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c02016-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms11696https://doaj.org/toc/2041-1723The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying two-dimensional Dirac fermions.Leslie M. SchoopMazhar N. AliCarola StraßerAndreas ToppAndrei VarykhalovDmitry MarchenkoViola DuppelStuart S. P. ParkinBettina V. LotschChristian R. AstNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-7 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Leslie M. Schoop Mazhar N. Ali Carola Straßer Andreas Topp Andrei Varykhalov Dmitry Marchenko Viola Duppel Stuart S. P. Parkin Bettina V. Lotsch Christian R. Ast Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
description |
The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying two-dimensional Dirac fermions. |
format |
article |
author |
Leslie M. Schoop Mazhar N. Ali Carola Straßer Andreas Topp Andrei Varykhalov Dmitry Marchenko Viola Duppel Stuart S. P. Parkin Bettina V. Lotsch Christian R. Ast |
author_facet |
Leslie M. Schoop Mazhar N. Ali Carola Straßer Andreas Topp Andrei Varykhalov Dmitry Marchenko Viola Duppel Stuart S. P. Parkin Bettina V. Lotsch Christian R. Ast |
author_sort |
Leslie M. Schoop |
title |
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
title_short |
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
title_full |
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
title_fullStr |
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
title_full_unstemmed |
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS |
title_sort |
dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in zrsis |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c0 |
work_keys_str_mv |
AT lesliemschoop diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT mazharnali diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT carolastraßer diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT andreastopp diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT andreivarykhalov diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT dmitrymarchenko diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT violaduppel diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT stuartspparkin diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT bettinavlotsch diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis AT christianrast diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis |
_version_ |
1718390738665865216 |