Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS

The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Leslie M. Schoop, Mazhar N. Ali, Carola Straßer, Andreas Topp, Andrei Varykhalov, Dmitry Marchenko, Viola Duppel, Stuart S. P. Parkin, Bettina V. Lotsch, Christian R. Ast
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cc8fef11520d4993b28755d78b9b08c0
record_format dspace
spelling oai:doaj.org-article:cc8fef11520d4993b28755d78b9b08c02021-12-02T14:39:14ZDirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS10.1038/ncomms116962041-1723https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c02016-05-01T00:00:00Zhttps://doi.org/10.1038/ncomms11696https://doaj.org/toc/2041-1723The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying two-dimensional Dirac fermions.Leslie M. SchoopMazhar N. AliCarola StraßerAndreas ToppAndrei VarykhalovDmitry MarchenkoViola DuppelStuart S. P. ParkinBettina V. LotschChristian R. AstNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-7 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Leslie M. Schoop
Mazhar N. Ali
Carola Straßer
Andreas Topp
Andrei Varykhalov
Dmitry Marchenko
Viola Duppel
Stuart S. P. Parkin
Bettina V. Lotsch
Christian R. Ast
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
description The family of topological materials has been growing rapidly but most members bare limitations hindering the study of exotic behaviour of topological particles. Here, Schoop et al. report a Fermi surface with a diamond-shaped line of Dirac nodes in ZrSiS, providing a promising candidate for studying two-dimensional Dirac fermions.
format article
author Leslie M. Schoop
Mazhar N. Ali
Carola Straßer
Andreas Topp
Andrei Varykhalov
Dmitry Marchenko
Viola Duppel
Stuart S. P. Parkin
Bettina V. Lotsch
Christian R. Ast
author_facet Leslie M. Schoop
Mazhar N. Ali
Carola Straßer
Andreas Topp
Andrei Varykhalov
Dmitry Marchenko
Viola Duppel
Stuart S. P. Parkin
Bettina V. Lotsch
Christian R. Ast
author_sort Leslie M. Schoop
title Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
title_short Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
title_full Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
title_fullStr Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
title_full_unstemmed Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS
title_sort dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in zrsis
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/cc8fef11520d4993b28755d78b9b08c0
work_keys_str_mv AT lesliemschoop diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT mazharnali diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT carolastraßer diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT andreastopp diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT andreivarykhalov diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT dmitrymarchenko diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT violaduppel diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT stuartspparkin diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT bettinavlotsch diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
AT christianrast diracconeprotectedbynonsymmorphicsymmetryandthreedimensionaldiraclinenodeinzrsis
_version_ 1718390738665865216