Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
Abstract To understand impact of input and output parameters during optimization and degree of complexity, in the current study we numerically designed a bubble column reactor with a single sparger in the middle of the reactor. After that, some input and output parameters were selected in the post-p...
Guardado en:
Autores principales: | Rasool Pelalak, Ali Taghvaie Nakhjiri, Azam Marjani, Mashallah Rezakazemi, Saeed Shirazian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ccb41b33880f4959af24cb09d3c2adf7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Meisam Babanezhad, et al.
Publicado: (2020) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Synthesis, molecular dynamics simulation and adsorption study of different pollutants on functionalized mesosilica
por: Rasool Pelalak, et al.
Publicado: (2021) -
Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Research on Fuzzy Plastic Constitutive Model Based on Membership Function
por: Xigang Wang, et al.
Publicado: (2021)