Downregulation of Interferon-β and Inhibition of TLR3 Expression are associated with Fatal Outcome of Severe Fever with Thrombocytopenia Syndrome
Abstract Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease with high mortality and increasing prevalence in the East Asia. Though the etiological agent has been identified as a novel Bunyavirus, cellular mechanisms of viral pathogenesis and host immune response to...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ccba8e6aba85462ba274ab3940c2849b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease with high mortality and increasing prevalence in the East Asia. Though the etiological agent has been identified as a novel Bunyavirus, cellular mechanisms of viral pathogenesis and host immune response to SFTS virus infection remain unknown. A comprehensive study was conducted on a cohort of 70 patients on clinical manifestations, viral loads, modulation of cytokines, serum interferon level, immune related gene expression in peripheral blood cells, and dynamic changes of circulating dendritic cells during the acute phase of SFTSV infection. We found that high level viremia, reduced platelets, coagulation dysfunction, multi-organ injuries, elevated IL-6 and TNF-α were closely associated with the aggravation of SFTS. In addition, we demonstrated strong correlations between disease severity and the decline of serum IFN-β and IL-1β level, reduction of myeloid dendritic cells (mDCs) and suppressed Toll like receptor 3 expression in monocytes and mDCs. In general, dysfunction of innate immune response and cytokine storm are both involved in the pathogenesis of SFTS. Reduction of myeloid DCs contributes to the fatal outcome of SFTS virus infection, and the regulation of TLR3 could probably be the mechanism. |
---|