Road crack segmentation using an attention residual U-Net with generative adversarial
This paper proposed an end-to-end road crack segmentation model based on attention mechanism and deep FCN with generative adversarial learning. We create a segmentation network by introducing a visual attention mechanism and residual module to a fully convolutional network(FCN) to capture richer loc...
Enregistré dans:
Auteurs principaux: | Xing Hu, Minghui Yao, Dawei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ccc0569333544ed7a9cc36fc49156950 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks
par: Anastasiia Kyslytsyna, et autres
Publié: (2021) -
Second-order ResU-Net for automatic MRI brain tumor segmentation
par: Ning Sheng, et autres
Publié: (2021) -
Accurate pancreas segmentation using multi-level pyramidal pooling residual U-Net with adversarial mechanism
par: Meiyu Li, et autres
Publié: (2021) -
Adversarial Learning with Bidirectional Attention for Visual Question Answering
par: Qifeng Li, et autres
Publié: (2021) -
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
par: Udit Sharma, et autres
Publié: (2021)