Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints

Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.

Guardado en:
Detalles Bibliográficos
Autores principales: Joe G. Greener, Shaun M. Kandathil, David T. Jones
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c94
record_format dspace
spelling oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c942021-12-02T14:39:00ZDeep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints10.1038/s41467-019-11994-02041-1723https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c942019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11994-0https://doaj.org/toc/2041-1723Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.Joe G. GreenerShaun M. KandathilDavid T. JonesNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joe G. Greener
Shaun M. Kandathil
David T. Jones
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
description Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.
format article
author Joe G. Greener
Shaun M. Kandathil
David T. Jones
author_facet Joe G. Greener
Shaun M. Kandathil
David T. Jones
author_sort Joe G. Greener
title Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
title_short Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
title_full Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
title_fullStr Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
title_full_unstemmed Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
title_sort deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94
work_keys_str_mv AT joeggreener deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints
AT shaunmkandathil deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints
AT davidtjones deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints
_version_ 1718390797603176448