Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c94 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c942021-12-02T14:39:00ZDeep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints10.1038/s41467-019-11994-02041-1723https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c942019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11994-0https://doaj.org/toc/2041-1723Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.Joe G. GreenerShaun M. KandathilDavid T. JonesNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joe G. Greener Shaun M. Kandathil David T. Jones Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
description |
Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains. |
format |
article |
author |
Joe G. Greener Shaun M. Kandathil David T. Jones |
author_facet |
Joe G. Greener Shaun M. Kandathil David T. Jones |
author_sort |
Joe G. Greener |
title |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_short |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_full |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_fullStr |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_full_unstemmed |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_sort |
deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94 |
work_keys_str_mv |
AT joeggreener deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints AT shaunmkandathil deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints AT davidtjones deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints |
_version_ |
1718390797603176448 |