Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
id |
oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c94 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ccdc53de641e49ecb1dcddc994cc5c942021-12-02T14:39:00ZDeep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints10.1038/s41467-019-11994-02041-1723https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c942019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11994-0https://doaj.org/toc/2041-1723Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.Joe G. GreenerShaun M. KandathilDavid T. JonesNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joe G. Greener Shaun M. Kandathil David T. Jones Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
description |
Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains. |
format |
article |
author |
Joe G. Greener Shaun M. Kandathil David T. Jones |
author_facet |
Joe G. Greener Shaun M. Kandathil David T. Jones |
author_sort |
Joe G. Greener |
title |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_short |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_full |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_fullStr |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_full_unstemmed |
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
title_sort |
deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94 |
work_keys_str_mv |
AT joeggreener deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints AT shaunmkandathil deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints AT davidtjones deeplearningextendsdenovoproteinmodellingcoverageofgenomesusingiterativelypredictedstructuralconstraints |
_version_ |
1718390797603176448 |