Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
Prediction of protein structures on the scale of genomes remains a challenge. Here the authors introduce a protein structure prediction method that uses deep learning to predict inter-atomic distances, torsion angles and hydrogen bonds, and apply it to predict the structures of 1475 Pfam domains.
Guardado en:
Autores principales: | Joe G. Greener, Shaun M. Kandathil, David T. Jones |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ccdc53de641e49ecb1dcddc994cc5c94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins.
por: Joe G Greener, et al.
Publicado: (2021) -
Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.
por: Daren C Card, et al.
Publicado: (2014) -
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
por: Dimitrios Vitsios, et al.
Publicado: (2021) -
DeepUEP: Prediction of Urine Excretory Proteins Using Deep Learning
por: Wei Du, et al.
Publicado: (2020) -
Predictions of Backbone Dynamics in Intrinsically Disordered Proteins Using De Novo Fragment-Based Protein Structure Predictions
por: Tomasz Kosciolek, et al.
Publicado: (2017)