Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences

The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jason A. Fries, Paroma Varma, Vincent S. Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, Scott Delp, Euan Ashley, Christopher Ré, James R. Priest
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from the UK biobank.