Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from th...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cd0dfcc01b1d4f6ab865ca1d205bea84 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cd0dfcc01b1d4f6ab865ca1d205bea842021-12-02T14:38:42ZWeakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences10.1038/s41467-019-11012-32041-1723https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea842019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11012-3https://doaj.org/toc/2041-1723The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from the UK biobank.Jason A. FriesParoma VarmaVincent S. ChenKe XiaoHeliodoro TejedaPriyanka SahaJared DunnmonHenry ChubbShiraz MaskatiaMadalina FiterauScott DelpEuan AshleyChristopher RéJames R. PriestNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jason A. Fries Paroma Varma Vincent S. Chen Ke Xiao Heliodoro Tejeda Priyanka Saha Jared Dunnmon Henry Chubb Shiraz Maskatia Madalina Fiterau Scott Delp Euan Ashley Christopher Ré James R. Priest Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
description |
The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from the UK biobank. |
format |
article |
author |
Jason A. Fries Paroma Varma Vincent S. Chen Ke Xiao Heliodoro Tejeda Priyanka Saha Jared Dunnmon Henry Chubb Shiraz Maskatia Madalina Fiterau Scott Delp Euan Ashley Christopher Ré James R. Priest |
author_facet |
Jason A. Fries Paroma Varma Vincent S. Chen Ke Xiao Heliodoro Tejeda Priyanka Saha Jared Dunnmon Henry Chubb Shiraz Maskatia Madalina Fiterau Scott Delp Euan Ashley Christopher Ré James R. Priest |
author_sort |
Jason A. Fries |
title |
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
title_short |
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
title_full |
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
title_fullStr |
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
title_full_unstemmed |
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences |
title_sort |
weakly supervised classification of aortic valve malformations using unlabeled cardiac mri sequences |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84 |
work_keys_str_mv |
AT jasonafries weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT paromavarma weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT vincentschen weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT kexiao weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT heliodorotejeda weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT priyankasaha weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT jareddunnmon weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT henrychubb weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT shirazmaskatia weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT madalinafiterau weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT scottdelp weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT euanashley weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT christopherre weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences AT jamesrpriest weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences |
_version_ |
1718390921457827840 |