Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences

The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jason A. Fries, Paroma Varma, Vincent S. Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, Scott Delp, Euan Ashley, Christopher Ré, James R. Priest
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cd0dfcc01b1d4f6ab865ca1d205bea84
record_format dspace
spelling oai:doaj.org-article:cd0dfcc01b1d4f6ab865ca1d205bea842021-12-02T14:38:42ZWeakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences10.1038/s41467-019-11012-32041-1723https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea842019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11012-3https://doaj.org/toc/2041-1723The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from the UK biobank.Jason A. FriesParoma VarmaVincent S. ChenKe XiaoHeliodoro TejedaPriyanka SahaJared DunnmonHenry ChubbShiraz MaskatiaMadalina FiterauScott DelpEuan AshleyChristopher RéJames R. PriestNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jason A. Fries
Paroma Varma
Vincent S. Chen
Ke Xiao
Heliodoro Tejeda
Priyanka Saha
Jared Dunnmon
Henry Chubb
Shiraz Maskatia
Madalina Fiterau
Scott Delp
Euan Ashley
Christopher Ré
James R. Priest
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
description The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from the UK biobank.
format article
author Jason A. Fries
Paroma Varma
Vincent S. Chen
Ke Xiao
Heliodoro Tejeda
Priyanka Saha
Jared Dunnmon
Henry Chubb
Shiraz Maskatia
Madalina Fiterau
Scott Delp
Euan Ashley
Christopher Ré
James R. Priest
author_facet Jason A. Fries
Paroma Varma
Vincent S. Chen
Ke Xiao
Heliodoro Tejeda
Priyanka Saha
Jared Dunnmon
Henry Chubb
Shiraz Maskatia
Madalina Fiterau
Scott Delp
Euan Ashley
Christopher Ré
James R. Priest
author_sort Jason A. Fries
title Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
title_short Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
title_full Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
title_fullStr Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
title_full_unstemmed Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
title_sort weakly supervised classification of aortic valve malformations using unlabeled cardiac mri sequences
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84
work_keys_str_mv AT jasonafries weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT paromavarma weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT vincentschen weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT kexiao weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT heliodorotejeda weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT priyankasaha weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT jareddunnmon weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT henrychubb weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT shirazmaskatia weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT madalinafiterau weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT scottdelp weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT euanashley weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT christopherre weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
AT jamesrpriest weaklysupervisedclassificationofaorticvalvemalformationsusingunlabeledcardiacmrisequences
_version_ 1718390921457827840