Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
The availability of labelled training data is one of the practical obstacles towards wide application of machine learning models in medicine. Here the authors develop a weakly supervised deep learning model for the classification of aortic malformations using unlabelled cardiac MRI sequences from th...
Enregistré dans:
Auteurs principaux: | Jason A. Fries, Paroma Varma, Vincent S. Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, Scott Delp, Euan Ashley, Christopher Ré, James R. Priest |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cd0dfcc01b1d4f6ab865ca1d205bea84 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
par: Khaled Saab, et autres
Publié: (2020) -
Classification of unlabeled online media
par: Sakthi Kumar Arul Prakash, et autres
Publié: (2021) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
par: Sabri Eyuboglu, et autres
Publié: (2021) -
Millisecond dynamics of an unlabeled amino acid transporter
par: Tina R. Matin, et autres
Publié: (2020) -
Screening drug-target interactions with positive-unlabeled learning
par: Lihong Peng, et autres
Publié: (2017)