Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures

Upper critical magnetic field Hc2 in geometries parallel and perpendicular to the heterostructure surface in thin film ferromagnet–superconductor–ferromagnet trilayer spin-valve cores is studied theoretically and experimentally. A wedge deposition technique is used for single-run preparation of a se...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Antropov, Evgheni
Formato: article
Lenguaje:EN
Publicado: D.Ghitu Institute of Electronic Engineering and Nanotechnologies 2013
Materias:
Acceso en línea:https://doaj.org/article/cd19e2e3a511402999638fc3c420162d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cd19e2e3a511402999638fc3c420162d
record_format dspace
spelling oai:doaj.org-article:cd19e2e3a511402999638fc3c420162d2021-11-21T12:00:21ZUpper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures2537-63651810-648Xhttps://doaj.org/article/cd19e2e3a511402999638fc3c420162d2013-09-01T00:00:00Zhttps://mjps.nanotech.md/archive/2013/article/27695https://doaj.org/toc/1810-648Xhttps://doaj.org/toc/2537-6365Upper critical magnetic field Hc2 in geometries parallel and perpendicular to the heterostructure surface in thin film ferromagnet–superconductor–ferromagnet trilayer spin-valve cores is studied theoretically and experimentally. A wedge deposition technique is used for single-run preparation of a set of samples with thickness dF1 of the bottom and dF2 of the top ferromagnet (F) Cu41Ni59. The critical field Hc2 is measured in a temperature range of 0.4–8 K and magnetic fields of up to 9 T. A transition from an oscillatory to reentrant behavior of the superconducting transition temperature versus F-layer thickness induced by an external magnetic field is observed for the first time. To correctly interpret the experimental data, we develop a quasiclassical theory, which makes it possible to estimate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of system parameters. A fairly good agreement between our theoretical predictions and experimental data is demonstrated for all samples, using a single set of fit parameters. This confirms the adequacy of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu41Ni59/Nb/ Cu41Ni59 spin-valve core trilayers.Antropov, EvgheniD.Ghitu Institute of Electronic Engineering and NanotechnologiesarticlePhysicsQC1-999ElectronicsTK7800-8360ENMoldavian Journal of the Physical Sciences, Vol 12, Iss 1-2, Pp 44-50 (2013)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronics
TK7800-8360
spellingShingle Physics
QC1-999
Electronics
TK7800-8360
Antropov, Evgheni
Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
description Upper critical magnetic field Hc2 in geometries parallel and perpendicular to the heterostructure surface in thin film ferromagnet–superconductor–ferromagnet trilayer spin-valve cores is studied theoretically and experimentally. A wedge deposition technique is used for single-run preparation of a set of samples with thickness dF1 of the bottom and dF2 of the top ferromagnet (F) Cu41Ni59. The critical field Hc2 is measured in a temperature range of 0.4–8 K and magnetic fields of up to 9 T. A transition from an oscillatory to reentrant behavior of the superconducting transition temperature versus F-layer thickness induced by an external magnetic field is observed for the first time. To correctly interpret the experimental data, we develop a quasiclassical theory, which makes it possible to estimate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of system parameters. A fairly good agreement between our theoretical predictions and experimental data is demonstrated for all samples, using a single set of fit parameters. This confirms the adequacy of the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu41Ni59/Nb/ Cu41Ni59 spin-valve core trilayers.
format article
author Antropov, Evgheni
author_facet Antropov, Evgheni
author_sort Antropov, Evgheni
title Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
title_short Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
title_full Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
title_fullStr Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
title_full_unstemmed Upper critical field in trilayer ferromagnet-superconductor-ferromagnet (FSF) structures
title_sort upper critical field in trilayer ferromagnet-superconductor-ferromagnet (fsf) structures
publisher D.Ghitu Institute of Electronic Engineering and Nanotechnologies
publishDate 2013
url https://doaj.org/article/cd19e2e3a511402999638fc3c420162d
work_keys_str_mv AT antropovevgheni uppercriticalfieldintrilayerferromagnetsuperconductorferromagnetfsfstructures
_version_ 1718419330429878272