On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors
Abstract The resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (n...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd1efd81a810448da77207b5900ba2c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cd1efd81a810448da77207b5900ba2c7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cd1efd81a810448da77207b5900ba2c72021-12-02T10:49:29ZOn the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors10.1038/s41598-021-81549-12045-2322https://doaj.org/article/cd1efd81a810448da77207b5900ba2c72021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81549-1https://doaj.org/toc/2045-2322Abstract The resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (north and south of Cap Blanc), based on oceanographic regimes. We delineated two size-based groups (“plankton” and “pelagic fish”) corresponding to lower and higher trophic levels, respectively. Over the 20-year period, all spatial remote sensing environmental variables increased significantly, except in the area south of Cap Blanc where sea surface Chlorophyll-a concentrations declined and the upwelling favorable wind was stable. Relative index of marine pelagic abundance was higher in the south area compared to the north area of Cap Blanc. No significant latitudinal shift to the mass center was detected, regardless of trophic level. Relative pelagic abundance did not change, suggesting sCCLME pelagic organisms were able to adapt to changing environmental conditions. Despite strong annual variability and the presence of major stressors (overfishing, climate change), the marine pelagic ressources, mainly fish and plankton remained relatively stable over the two decades, advancing our understanding on the resistance of this east border upwelling system.Ndague DiogoulPatrice BrehmerHervé DemarcqSalaheddine El AyoubiAbou ThiamAbdoulaye SarreAnne MougetYannick PerrotNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ndague Diogoul Patrice Brehmer Hervé Demarcq Salaheddine El Ayoubi Abou Thiam Abdoulaye Sarre Anne Mouget Yannick Perrot On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
description |
Abstract The resistance of an east border upwelling system was investigated using relative index of marine pelagic biomass estimates under a changing environment spanning 20-years in the strongly exploited southern Canary Current Large marine Ecosystem (sCCLME). We divided the sCCLME in two parts (north and south of Cap Blanc), based on oceanographic regimes. We delineated two size-based groups (“plankton” and “pelagic fish”) corresponding to lower and higher trophic levels, respectively. Over the 20-year period, all spatial remote sensing environmental variables increased significantly, except in the area south of Cap Blanc where sea surface Chlorophyll-a concentrations declined and the upwelling favorable wind was stable. Relative index of marine pelagic abundance was higher in the south area compared to the north area of Cap Blanc. No significant latitudinal shift to the mass center was detected, regardless of trophic level. Relative pelagic abundance did not change, suggesting sCCLME pelagic organisms were able to adapt to changing environmental conditions. Despite strong annual variability and the presence of major stressors (overfishing, climate change), the marine pelagic ressources, mainly fish and plankton remained relatively stable over the two decades, advancing our understanding on the resistance of this east border upwelling system. |
format |
article |
author |
Ndague Diogoul Patrice Brehmer Hervé Demarcq Salaheddine El Ayoubi Abou Thiam Abdoulaye Sarre Anne Mouget Yannick Perrot |
author_facet |
Ndague Diogoul Patrice Brehmer Hervé Demarcq Salaheddine El Ayoubi Abou Thiam Abdoulaye Sarre Anne Mouget Yannick Perrot |
author_sort |
Ndague Diogoul |
title |
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
title_short |
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
title_full |
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
title_fullStr |
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
title_full_unstemmed |
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
title_sort |
on the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/cd1efd81a810448da77207b5900ba2c7 |
work_keys_str_mv |
AT ndaguediogoul ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT patricebrehmer ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT hervedemarcq ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT salaheddineelayoubi ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT abouthiam ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT abdoulayesarre ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT annemouget ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors AT yannickperrot ontherobustnessofaneasternboundaryupwellingecosystemexposedtomultiplestressors |
_version_ |
1718396617727410176 |