Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay

Oujiang River North Estuary Bridge in Wenzhou is the world’s first double-deck suspension bridge under construction with three-tower and four-span. It is the first time to build large open caisson foundation in the deep marine soft clay in estuary with strong tide, extending the application scope of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xin Yan, Wei Zhan, Zhi Hu, Danqiang Xiao, Yiqiang Yu, Jinchang Wang
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/cd2850c8ce074378a7372bf7b892517f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cd2850c8ce074378a7372bf7b892517f
record_format dspace
spelling oai:doaj.org-article:cd2850c8ce074378a7372bf7b892517f2021-11-08T02:36:42ZField Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay1687-809410.1155/2021/7656068https://doaj.org/article/cd2850c8ce074378a7372bf7b892517f2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/7656068https://doaj.org/toc/1687-8094Oujiang River North Estuary Bridge in Wenzhou is the world’s first double-deck suspension bridge under construction with three-tower and four-span. It is the first time to build large open caisson foundation in the deep marine soft clay in estuary with strong tide, extending the application scope of caisson. To study the deformation and stress characteristics of large open caisson during excavation and ensure the safety of anchorage excavation, a large number of sensors are arranged in the caisson. By analyzing the change of tip resistance, lateral soil pressure, and posture parameters during caisson excavation, the stress characteristics and deformation of caisson are described. The result shows the following. (1) Because of the thixotropy of soft clay, the reaction force of partition wall in deep soft soil area of caisson is similar to that of blade foot, and the reaction force of blade foot can be effectively reduced through the layering construction of caisson. (2) The height of caisson construction and the sand-bearing stratum will obviously affect the plane torsion angle of caisson. When the caisson enters the sand-bearing stratum, the lateral soil pressure increases significantly, which leads to the increase of the plane torsion angle. (3) The inclination and central deviation of caisson are sensitive to the caisson construction and stratum property. It can be found that the lateral soil pressure, plane torsion angle, inclination, and central deviation of caisson are sensitive to stratum property, and inhomogeneity of stratum easily leads to inclination of caisson. Based on the field monitoring data, the stress characteristics and geometric posture of caisson during sinking are studied, which provide technical guidance for scheme design and subsidence prediction analysis of caisson in deep marine soft clay. It can provide a good opportunity to study the behaviors of large caisson foundation constructed in deep marine soft clay and has great significance and reference value for construction optimization of anchorage structure.Xin YanWei ZhanZhi HuDanqiang XiaoYiqiang YuJinchang WangHindawi LimitedarticleEngineering (General). Civil engineering (General)TA1-2040ENAdvances in Civil Engineering, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle Engineering (General). Civil engineering (General)
TA1-2040
Xin Yan
Wei Zhan
Zhi Hu
Danqiang Xiao
Yiqiang Yu
Jinchang Wang
Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
description Oujiang River North Estuary Bridge in Wenzhou is the world’s first double-deck suspension bridge under construction with three-tower and four-span. It is the first time to build large open caisson foundation in the deep marine soft clay in estuary with strong tide, extending the application scope of caisson. To study the deformation and stress characteristics of large open caisson during excavation and ensure the safety of anchorage excavation, a large number of sensors are arranged in the caisson. By analyzing the change of tip resistance, lateral soil pressure, and posture parameters during caisson excavation, the stress characteristics and deformation of caisson are described. The result shows the following. (1) Because of the thixotropy of soft clay, the reaction force of partition wall in deep soft soil area of caisson is similar to that of blade foot, and the reaction force of blade foot can be effectively reduced through the layering construction of caisson. (2) The height of caisson construction and the sand-bearing stratum will obviously affect the plane torsion angle of caisson. When the caisson enters the sand-bearing stratum, the lateral soil pressure increases significantly, which leads to the increase of the plane torsion angle. (3) The inclination and central deviation of caisson are sensitive to the caisson construction and stratum property. It can be found that the lateral soil pressure, plane torsion angle, inclination, and central deviation of caisson are sensitive to stratum property, and inhomogeneity of stratum easily leads to inclination of caisson. Based on the field monitoring data, the stress characteristics and geometric posture of caisson during sinking are studied, which provide technical guidance for scheme design and subsidence prediction analysis of caisson in deep marine soft clay. It can provide a good opportunity to study the behaviors of large caisson foundation constructed in deep marine soft clay and has great significance and reference value for construction optimization of anchorage structure.
format article
author Xin Yan
Wei Zhan
Zhi Hu
Danqiang Xiao
Yiqiang Yu
Jinchang Wang
author_facet Xin Yan
Wei Zhan
Zhi Hu
Danqiang Xiao
Yiqiang Yu
Jinchang Wang
author_sort Xin Yan
title Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
title_short Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
title_full Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
title_fullStr Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
title_full_unstemmed Field Study on Deformation and Stress Characteristics of Large Open Caisson during Excavation in Deep Marine Soft Clay
title_sort field study on deformation and stress characteristics of large open caisson during excavation in deep marine soft clay
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/cd2850c8ce074378a7372bf7b892517f
work_keys_str_mv AT xinyan fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
AT weizhan fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
AT zhihu fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
AT danqiangxiao fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
AT yiqiangyu fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
AT jinchangwang fieldstudyondeformationandstresscharacteristicsoflargeopencaissonduringexcavationindeepmarinesoftclay
_version_ 1718443137692598272