Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Y...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cd28cb11b3b449c4a07c8dc49db8fc4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cd28cb11b3b449c4a07c8dc49db8fc4e2021-11-25T19:07:27ZGeometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection10.3390/sym131121892073-8994https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2189https://doaj.org/toc/2073-8994The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton equation when the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field’s conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cosymplectic metric as a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results.Pengfei ZhangYanlin LiSoumendu RoySantu DeyMDPI AGarticleRicci–Yamabe soliton∗-conformal <i>η</i>-Ricci–Yamabe solitonconformal killing vector field<i>α</i>-cosymplectic manifoldsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2189, p 2189 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Ricci–Yamabe soliton ∗-conformal <i>η</i>-Ricci–Yamabe soliton conformal killing vector field <i>α</i>-cosymplectic manifolds Mathematics QA1-939 |
spellingShingle |
Ricci–Yamabe soliton ∗-conformal <i>η</i>-Ricci–Yamabe soliton conformal killing vector field <i>α</i>-cosymplectic manifolds Mathematics QA1-939 Pengfei Zhang Yanlin Li Soumendu Roy Santu Dey Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
description |
The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton equation when the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field’s conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cosymplectic metric as a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results. |
format |
article |
author |
Pengfei Zhang Yanlin Li Soumendu Roy Santu Dey |
author_facet |
Pengfei Zhang Yanlin Li Soumendu Roy Santu Dey |
author_sort |
Pengfei Zhang |
title |
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
title_short |
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
title_full |
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
title_fullStr |
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
title_full_unstemmed |
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection |
title_sort |
geometry of <i>α</i>-cosymplectic metric as ∗-conformal <i>η</i>-ricci–yamabe solitons admitting quarter-symmetric metric connection |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e |
work_keys_str_mv |
AT pengfeizhang geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection AT yanlinli geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection AT soumenduroy geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection AT santudey geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection |
_version_ |
1718410305618313216 |