Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection

The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Y...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pengfei Zhang, Yanlin Li, Soumendu Roy, Santu Dey
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cd28cb11b3b449c4a07c8dc49db8fc4e
record_format dspace
spelling oai:doaj.org-article:cd28cb11b3b449c4a07c8dc49db8fc4e2021-11-25T19:07:27ZGeometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection10.3390/sym131121892073-8994https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2189https://doaj.org/toc/2073-8994The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton equation when the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field’s conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cosymplectic metric as a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results.Pengfei ZhangYanlin LiSoumendu RoySantu DeyMDPI AGarticleRicci–Yamabe soliton∗-conformal <i>η</i>-Ricci–Yamabe solitonconformal killing vector field<i>α</i>-cosymplectic manifoldsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2189, p 2189 (2021)
institution DOAJ
collection DOAJ
language EN
topic Ricci–Yamabe soliton
∗-conformal <i>η</i>-Ricci–Yamabe soliton
conformal killing vector field
<i>α</i>-cosymplectic manifolds
Mathematics
QA1-939
spellingShingle Ricci–Yamabe soliton
∗-conformal <i>η</i>-Ricci–Yamabe soliton
conformal killing vector field
<i>α</i>-cosymplectic manifolds
Mathematics
QA1-939
Pengfei Zhang
Yanlin Li
Soumendu Roy
Santu Dey
Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
description The outline of this research article is to initiate the development of a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds according to the quarter-symmetric metric connection. Here, we have established some curvature properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-Cosymplectic manifolds in regard to the quarter-symmetric metric connection. Further, the attributes of the soliton when the manifold gratifies a quarter-symmetric metric connection have been displayed in this article. Later, we picked up the Laplace equation from ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton equation when the potential vector field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> of the soliton is of gradient type, admitting quarter-symmetric metric connection. Next, we evolved the nature of the soliton when the vector field’s conformal killing reveals a quarter-symmetric metric connection. We show an example of a 5-dimensional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cosymplectic metric as a ∗-conformal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci–Yamabe soliton acknowledges quarter-symmetric metric connection to prove our results.
format article
author Pengfei Zhang
Yanlin Li
Soumendu Roy
Santu Dey
author_facet Pengfei Zhang
Yanlin Li
Soumendu Roy
Santu Dey
author_sort Pengfei Zhang
title Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
title_short Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
title_full Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
title_fullStr Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
title_full_unstemmed Geometry of <i>α</i>-Cosymplectic Metric as ∗-Conformal <i>η</i>-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection
title_sort geometry of <i>α</i>-cosymplectic metric as ∗-conformal <i>η</i>-ricci–yamabe solitons admitting quarter-symmetric metric connection
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/cd28cb11b3b449c4a07c8dc49db8fc4e
work_keys_str_mv AT pengfeizhang geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection
AT yanlinli geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection
AT soumenduroy geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection
AT santudey geometryofiaicosymplecticmetricasconformaliēiricciyamabesolitonsadmittingquartersymmetricmetricconnection
_version_ 1718410305618313216