State-of-the-art Italian dependency parsers based on neural and ensemble systems
In this paper we present a work which aims to test the most advanced, state-of-the-art syntactic dependency parsers based on deep neural networks (DNN) on Italian. We made a large set of experiments by using two Italian treebanks containing different text types downloaded from the Universal Dependen...
Guardado en:
Autores principales: | Oronzo Antonelli, Fabio Tamburini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Accademia University Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd2f1baef5c24e0288441613f6020325 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using Deep Neural Networks for Smoothing Pitch Profiles in Connected Speech
por: Michele Ferro, et al.
Publicado: (2019) -
Entity Linking for the Semantic Annotation of Italian Tweets
por: Pierpaolo Basile, et al.
Publicado: (2016) -
Emerging Topics at the Fourth Italian Conference on Computational Linguistics
por: Roberto Basili, et al.
Publicado: (2018) -
PARSEME-It: an Italian corpus annotated with verbal multiword expressions
por: Johanna Monti, et al.
Publicado: (2019) -
Large scale datasets for Image and Video Captioning in Italian
por: Scaiella Antonio, et al.
Publicado: (2019)