Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields.
Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of...
Enregistré dans:
Auteurs principaux: | Ephrem Habyarimana, Faheem S Baloch |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cd3633b59c6e43f18b8c3b1fe1adf9f5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Remote Sensing-Based Estimation of Advanced Perennial Grass Biomass Yields for Bioenergy
par: Yuki Hamada, et autres
Publié: (2021) -
Domain-Guided Machine Learning for Remotely Sensed In-Season Crop Growth Estimation
par: George Worrall, et autres
Publié: (2021) -
Sorghum extract: Phytochemical, proximate, and GC-MS analyses
par: Olayinka O. Ajani, et autres
Publié: (2021) -
Potential utilization of satellite remote sensing for field-based agricultural studies
par: Keiji Jindo, et autres
Publié: (2021) -
Remote sensing of seasonal light use efficiency in temperate bog ecosystems
par: R. Tortini, et autres
Publié: (2017)