Photorealistic Reconstruction of Visual Texture From EEG Signals
Recent advances in brain decoding have made it possible to classify image categories based on neural activity. Increasing numbers of studies have further attempted to reconstruct the image itself. However, because images of objects and scenes inherently involve spatial layout information, the recons...
Guardado en:
Autores principales: | Suguru Wakita, Taiki Orima, Isamu Motoyoshi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd3a66ddb018435eb3ee5c3adcf9c289 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural tracking in infants – An analytical tool for multisensory social processing in development
por: Sarah Jessen, et al.
Publicado: (2021) -
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
por: Alexander Kuc, et al.
Publicado: (2021) -
Automated Damage Detection of (C/C)/Si/SiC Composite Using Vibration Modes with Deep Neural Networks
por: Chihiro Shibata, et al.
Publicado: (2021) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021) -
A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image
por: Chunhui Zhao, et al.
Publicado: (2021)