SMM: Leveraging Metadata for Contextually Salient Multi-Variate Motif Discovery
A common challenge in multimedia data understanding is the unsupervised discovery of recurring patterns, or motifs, in time series data. The discovery of motifs in uni-variate time series is a well studied problem and, while being a relatively new area of research, there are also several proposals f...
Guardado en:
Autores principales: | Silvestro R. Poccia, K. Selçuk Candan, Maria Luisa Sapino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd46d70fe10047799b56921f16ec57a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Measuring the Topological Time Irreversibility of Time Series With the Degree-Vector-Based Visibility Graph Method
por: Ryutaro Mori, et al.
Publicado: (2021) -
Análisis de los fallos y daños en las cubiertas de los edificios
por: Carretero-Ayuso,Manuel J., et al.
Publicado: (2017) -
CN-Motifs Perceptive Graph Neural Networks
por: Fan Zhang, et al.
Publicado: (2021) -
Multilevel Privacy Assurance Evaluation of Healthcare Metadata
por: Syeda Amna Sohail, et al.
Publicado: (2021) -
Multistrengthening Module-Based Salient Object Detection
por: Qian Zhao, et al.
Publicado: (2021)