SMM: Leveraging Metadata for Contextually Salient Multi-Variate Motif Discovery
A common challenge in multimedia data understanding is the unsupervised discovery of recurring patterns, or motifs, in time series data. The discovery of motifs in uni-variate time series is a well studied problem and, while being a relatively new area of research, there are also several proposals f...
Enregistré dans:
Auteurs principaux: | Silvestro R. Poccia, K. Selçuk Candan, Maria Luisa Sapino |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/cd46d70fe10047799b56921f16ec57a6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Measuring the Topological Time Irreversibility of Time Series With the Degree-Vector-Based Visibility Graph Method
par: Ryutaro Mori, et autres
Publié: (2021) -
Análisis de los fallos y daños en las cubiertas de los edificios
par: Carretero-Ayuso,Manuel J., et autres
Publié: (2017) -
CN-Motifs Perceptive Graph Neural Networks
par: Fan Zhang, et autres
Publié: (2021) -
Multilevel Privacy Assurance Evaluation of Healthcare Metadata
par: Syeda Amna Sohail, et autres
Publié: (2021) -
Multistrengthening Module-Based Salient Object Detection
par: Qian Zhao, et autres
Publié: (2021)