Semiparametric maximum likelihood probability density estimation.
A comprehensive methodology for semiparametric probability density estimation is introduced and explored. The probability density is modelled by sequences of mostly regular or steep exponential families generated by flexible sets of basis functions, possibly including boundary terms. Parameters are...
Guardado en:
Autor principal: | Frank Kwasniok |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd5011ef240b492cb7b460bc5287edd5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semiparametric maximum likelihood probability density estimation
por: Frank Kwasniok
Publicado: (2021) -
Quantum Semiparametric Estimation
por: Mankei Tsang, et al.
Publicado: (2020) -
RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation.
por: Kevin Liu, et al.
Publicado: (2011) -
Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters.
por: Kaarina Matilainen, et al.
Publicado: (2013) -
An investigation of irreproducibility in maximum likelihood phylogenetic inference
por: Xing-Xing Shen, et al.
Publicado: (2020)