Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry
Abstract The compositional difference between subducting slabs and their surrounding lower-mantle can yield the difference in incorporation mechanism of Fe and Al into bridgmanite between both regions, which should cause heterogeneity in physical properties and rheology of the lower mantle. However,...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd6781307a9f49ecb43856d006fcc16b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cd6781307a9f49ecb43856d006fcc16b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cd6781307a9f49ecb43856d006fcc16b2021-11-28T12:17:13ZIncorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry10.1038/s41598-021-00403-62045-2322https://doaj.org/article/cd6781307a9f49ecb43856d006fcc16b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00403-6https://doaj.org/toc/2045-2322Abstract The compositional difference between subducting slabs and their surrounding lower-mantle can yield the difference in incorporation mechanism of Fe and Al into bridgmanite between both regions, which should cause heterogeneity in physical properties and rheology of the lower mantle. However, the precise cation-distribution has not been examined in bridgmanites with Fe- and Al-contents expected in a mid-ocean ridge basalt component of subducting slabs. Here we report on Mg0.662Fe0.338Si0.662Al0.338O3 bridgmanite single-crystal characterized by a combination of single-crystal X-ray diffraction, synchrotron 57Fe-Mössbauer spectroscopy and electron probe microanalysis. We find that the charge-coupled substitution AMg2+ + BSi4+ ↔ AFe3+(high-spin) + BAl3+ is predominant in the incorporation of Fe and Al into the practically eightfold-coordinated A-site and the sixfold-coordinated B-site in bridgmanite structure. The incorporation of both cations via this substitution enhances the structural distortion due to the tilting of BO6 octahedra, yielding the unusual expansion of mean <A–O> bond-length due to flexibility of A–O bonds for the structural distortion, in contrast to mean <B–O> bond-length depending reasonably on the ionic radius effect. Moreover, we imply the phase-transition behavior and the elasticity of bridgmanite in slabs subducting into deeper parts of the lower mantle, in terms of the relative compressibility of AO12 (practically AO8) and BO6 polyhedra.Akihiko NakatsukaHiroshi FukuiSeiji KamadaNaohisa HiraoMakio OhkawaKazumasa SugiyamaTakashi YoshinoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Akihiko Nakatsuka Hiroshi Fukui Seiji Kamada Naohisa Hirao Makio Ohkawa Kazumasa Sugiyama Takashi Yoshino Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
description |
Abstract The compositional difference between subducting slabs and their surrounding lower-mantle can yield the difference in incorporation mechanism of Fe and Al into bridgmanite between both regions, which should cause heterogeneity in physical properties and rheology of the lower mantle. However, the precise cation-distribution has not been examined in bridgmanites with Fe- and Al-contents expected in a mid-ocean ridge basalt component of subducting slabs. Here we report on Mg0.662Fe0.338Si0.662Al0.338O3 bridgmanite single-crystal characterized by a combination of single-crystal X-ray diffraction, synchrotron 57Fe-Mössbauer spectroscopy and electron probe microanalysis. We find that the charge-coupled substitution AMg2+ + BSi4+ ↔ AFe3+(high-spin) + BAl3+ is predominant in the incorporation of Fe and Al into the practically eightfold-coordinated A-site and the sixfold-coordinated B-site in bridgmanite structure. The incorporation of both cations via this substitution enhances the structural distortion due to the tilting of BO6 octahedra, yielding the unusual expansion of mean <A–O> bond-length due to flexibility of A–O bonds for the structural distortion, in contrast to mean <B–O> bond-length depending reasonably on the ionic radius effect. Moreover, we imply the phase-transition behavior and the elasticity of bridgmanite in slabs subducting into deeper parts of the lower mantle, in terms of the relative compressibility of AO12 (practically AO8) and BO6 polyhedra. |
format |
article |
author |
Akihiko Nakatsuka Hiroshi Fukui Seiji Kamada Naohisa Hirao Makio Ohkawa Kazumasa Sugiyama Takashi Yoshino |
author_facet |
Akihiko Nakatsuka Hiroshi Fukui Seiji Kamada Naohisa Hirao Makio Ohkawa Kazumasa Sugiyama Takashi Yoshino |
author_sort |
Akihiko Nakatsuka |
title |
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
title_short |
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
title_full |
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
title_fullStr |
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
title_full_unstemmed |
Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
title_sort |
incorporation mechanism of fe and al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/cd6781307a9f49ecb43856d006fcc16b |
work_keys_str_mv |
AT akihikonakatsuka incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT hiroshifukui incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT seijikamada incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT naohisahirao incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT makioohkawa incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT kazumasasugiyama incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry AT takashiyoshino incorporationmechanismoffeandalintobridgmaniteinasubductingmidoceanridgebasaltanditscrystalchemistry |
_version_ |
1718408103015219200 |