Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles

Abstract In this study, cobalt ferrites (C) decorated onto 2D material (porous graphene (PG)) and 1D material (carbon nanofibers (CNF)), denoted as PG-C and CNF-C nanocomposites, respectively, were synthesized using solvothermal process. The prepared nanocomposites were studied as magnetic adsorbent...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Chella Santhosh, Ravi Nivetha, Pratap Kollu, Varsha Srivastava, Mika Sillanpää, Andrews Nirmala Grace, Amit Bhatnagar
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/cd75fb0cb8b7417aa2a190fd05dc10b6
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract In this study, cobalt ferrites (C) decorated onto 2D material (porous graphene (PG)) and 1D material (carbon nanofibers (CNF)), denoted as PG-C and CNF-C nanocomposites, respectively, were synthesized using solvothermal process. The prepared nanocomposites were studied as magnetic adsorbents for the removal of lead (cationic) and chromium(VI) (anionic) metal ions. The structural and chemical analysis of synthesized nanocomposites was conducted using different characterization techniques including Brunauer–Emmett–Teller (BET) analysis, field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), high resolution-transmission electron microscopy (HR-TEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Batch mode adsorption studies were conducted with the prepared nanocomposites to examine their maximum adsorption potential for lead and chromate ions. Performance parameters (time, pH, adsorbent dosage and initial ion concentrations) effecting the adsorption capacity of the nanocomposites were optimized. Different kinetic and isotherm models were examined to elucidate the adsorption process. Synthesized nanocomposites exhibited significant potential for the studied metal ions that can be further examined at pilot scale for the removal of metal ions from contaminated water.