An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data

Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple fea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peng-fei Ke, Dong-sheng Xiong, Jia-hui Li, Zhi-lin Pan, Jing Zhou, Shi-jia Li, Jie Song, Xiao-yi Chen, Gui-xiang Li, Jun Chen, Xiao-bo Li, Yu-ping Ning, Feng-chun Wu, Kai Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/cd9b79389a23479cb148f4150335e9d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:cd9b79389a23479cb148f4150335e9d9
record_format dspace
spelling oai:doaj.org-article:cd9b79389a23479cb148f4150335e9d92021-12-02T16:50:23ZAn integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data10.1038/s41598-021-94007-92045-2322https://doaj.org/article/cd9b79389a23479cb148f4150335e9d92021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94007-9https://doaj.org/toc/2045-2322Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.Peng-fei KeDong-sheng XiongJia-hui LiZhi-lin PanJing ZhouShi-jia LiJie SongXiao-yi ChenGui-xiang LiJun ChenXiao-bo LiYu-ping NingFeng-chun WuKai WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Peng-fei Ke
Dong-sheng Xiong
Jia-hui Li
Zhi-lin Pan
Jing Zhou
Shi-jia Li
Jie Song
Xiao-yi Chen
Gui-xiang Li
Jun Chen
Xiao-bo Li
Yu-ping Ning
Feng-chun Wu
Kai Wu
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
description Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
format article
author Peng-fei Ke
Dong-sheng Xiong
Jia-hui Li
Zhi-lin Pan
Jing Zhou
Shi-jia Li
Jie Song
Xiao-yi Chen
Gui-xiang Li
Jun Chen
Xiao-bo Li
Yu-ping Ning
Feng-chun Wu
Kai Wu
author_facet Peng-fei Ke
Dong-sheng Xiong
Jia-hui Li
Zhi-lin Pan
Jing Zhou
Shi-jia Li
Jie Song
Xiao-yi Chen
Gui-xiang Li
Jun Chen
Xiao-bo Li
Yu-ping Ning
Feng-chun Wu
Kai Wu
author_sort Peng-fei Ke
title An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_short An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_full An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_fullStr An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_full_unstemmed An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
title_sort integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/cd9b79389a23479cb148f4150335e9d9
work_keys_str_mv AT pengfeike anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT dongshengxiong anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jiahuili anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT zhilinpan anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jingzhou anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT shijiali anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jiesong anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiaoyichen anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT guixiangli anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT junchen anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiaoboli anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT yupingning anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT fengchunwu anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT kaiwu anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT pengfeike integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT dongshengxiong integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jiahuili integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT zhilinpan integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jingzhou integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT shijiali integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT jiesong integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiaoyichen integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT guixiangli integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT junchen integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT xiaoboli integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT yupingning integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT fengchunwu integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
AT kaiwu integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata
_version_ 1718383066602274816