An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data
Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple fea...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/cd9b79389a23479cb148f4150335e9d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:cd9b79389a23479cb148f4150335e9d9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:cd9b79389a23479cb148f4150335e9d92021-12-02T16:50:23ZAn integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data10.1038/s41598-021-94007-92045-2322https://doaj.org/article/cd9b79389a23479cb148f4150335e9d92021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94007-9https://doaj.org/toc/2045-2322Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.Peng-fei KeDong-sheng XiongJia-hui LiZhi-lin PanJing ZhouShi-jia LiJie SongXiao-yi ChenGui-xiang LiJun ChenXiao-bo LiYu-ping NingFeng-chun WuKai WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Peng-fei Ke Dong-sheng Xiong Jia-hui Li Zhi-lin Pan Jing Zhou Shi-jia Li Jie Song Xiao-yi Chen Gui-xiang Li Jun Chen Xiao-bo Li Yu-ping Ning Feng-chun Wu Kai Wu An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
description |
Abstract Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data. |
format |
article |
author |
Peng-fei Ke Dong-sheng Xiong Jia-hui Li Zhi-lin Pan Jing Zhou Shi-jia Li Jie Song Xiao-yi Chen Gui-xiang Li Jun Chen Xiao-bo Li Yu-ping Ning Feng-chun Wu Kai Wu |
author_facet |
Peng-fei Ke Dong-sheng Xiong Jia-hui Li Zhi-lin Pan Jing Zhou Shi-jia Li Jie Song Xiao-yi Chen Gui-xiang Li Jun Chen Xiao-bo Li Yu-ping Ning Feng-chun Wu Kai Wu |
author_sort |
Peng-fei Ke |
title |
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_short |
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_full |
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_fullStr |
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_full_unstemmed |
An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
title_sort |
integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/cd9b79389a23479cb148f4150335e9d9 |
work_keys_str_mv |
AT pengfeike anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT dongshengxiong anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jiahuili anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT zhilinpan anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jingzhou anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT shijiali anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jiesong anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiaoyichen anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT guixiangli anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT junchen anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiaoboli anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT yupingning anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT fengchunwu anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT kaiwu anintegratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT pengfeike integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT dongshengxiong integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jiahuili integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT zhilinpan integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jingzhou integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT shijiali integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT jiesong integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiaoyichen integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT guixiangli integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT junchen integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT xiaoboli integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT yupingning integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT fengchunwu integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata AT kaiwu integratedmachinelearningframeworkforadiscriminativeanalysisofschizophreniausingmultibiologicaldata |
_version_ |
1718383066602274816 |